F18A Documentation

Contents

U 101 [o Yol {1 o= RSP TURR 2
D L] =T ot o [OOSR PRSPPI 2
D L] d=Tot o 1 SO STPRRT PP 5
oY o P T a Yol o] (oY g 1V, FoTe [N L1) R 5
MY T oY [A R Y=) A=Y SRS 6
Standard Palette rEEISTEr VAIUEScocviii ettt et e e e e e e bte e e e e bt e e e e eabte e e e e nbaeeeeeaseeeeennsens 8
YT L ole] o] gy o] 1 =TSRRI 9
Yol o] 111 =PSRN 11
Yo o] 1T oY= o F= YR UURURNE 14
Yol o] LN g1 0= o 1 Y PRt 15
BItmMaAD LAY O i 15
Plotting Pixels on the Bitmap Layer (BML) @nd GIM2ccccuvieiiieeiiieeieeeeciee e sreeeveeesveeeetaeesreesvaeesarae e 15
N or= Lo TN o =T o U] o PRSP 17
N DP RIS OIS ciiiiiiiiiiiitteee e i ettt et e e e e st rr et e e e e s es st tbe e et eeeessas st beaaaeessssassbeseeaeeeesssaassssaaeeeeesesasnsssaaaeeessnsnnsnsneaees 17
L T (o] ARY23 V7 [T 18
GPU INSTIUCTION STttt e et e e s e e e e s semee e e s smee e e s smreeessmaneeesans 18
(071 =1 o Y- SO SRRt 19
Y L I] PP T U PR STUROPPO 19

Unlocking

The F18A defaults to a "locked" mode of operation to prevent legacy software from accidentally enabling any of the enhanced features.
I added the lock because during testing some ColecoVision games were causing strange behavior which I discovered was due to the
software writing to VDP registers over register 7. Since the 9918A only has 8 registers (0 to 7), it did not matter, and the higher values
were simply masked to a number between 0 and 7.

But, the F18A supports VDP register values from 0 to 63 which is how you take advantage of the new features. This is also how the
9938/58 add additional features, and the datasheets for the 9918A indicates registers over 7 are reserved. However, that didn't stop
some software from not following the rules, and on the 9918A/9928/9929 the bad behavior did not have any impact. But, the F18A has
to protect itself from that old software, thus it powers up locked.

Since the unlocking sequence has to be performed "in band", i.e. using the standard 9918A registers, I had to come up with a way that
would would never happen on the real 9918A. VR1 is probably the most critical VDP register since it contains most of the mode bits
plus the memory size bit, thus it is VR1 in the form of VR57 (VR57 the same as VR1 on a non-F18A system) that is used to unlock the
F18A.

Unlocking is done by writing >1C to VR57 twice, which on a real 9918A VDP is the same as writing to VR1. The value >1C was chosen
because it sets the bits in VR1 to something you would never do on a real 9918A, even accidentally because it makes the VDP almost
useless. And to write such a value twice, consecutively, is hopefully beyond all probability of happening accidentally.

Value >1C in VR1 looks like this:

4/16K|BLANK| IEO M1 | M2 X |SIZE | MAG |
0 0 | 0 1 | 1 1 | 0 | 0 |
By writing >1C on the real 9918A you are setting 4K VRAM, blank the screen, no interrupts, both M1 and M2 to '1' which is an illegal
mode, and a '1' to the unused bit-5 that the datasheet indicates should always be '0'. This would pretty much make the real 9918A
useless, and any working software would never operate with this combination of bits in VR1.

Writing to VR57 (binary: 111001) is VR1 on the 9918A which only sees the low 3-bits "001", and must be done twice in a row with no
other CPU-to-VDP access. On the F18A you will be writing to VR57, not VR1, and after two consecutive writes the ERM (Enhanced
Register Mode) will be unlocked. Any further writes to VR57 after being unlocked will re-lock the F18A.

Because writing >1C to VR1 on the real 9918A would mess up the video mode and other critical VDP configuration, a write to VR1
should immediately follow the unlock sequence if you care to detect the F18A and write software that works on both the 9918A and
F18A.

Thus you would have something like:

VDPERM
LIMI O * Interrupts must be off
LI RO, >391C * VR1/57, value 00011100
BL QVWTR * Write once
BL QVWTR * Write twice, unlock
LI RO,>01E0 * VR1, value 11100000, a sane setting
BL QVWTR * Write

Note that I'm using my version of VWTR here, not the E/A (or XB) versions.

Now you can test for the F18A, which is coming up in my next post.

Detection

To test for the F18A, I'm going to use Tursi's idea of using the GPU, which should make for a smaller test. Assuming the F18A unlock
sequence has been performed, a small GPU program will be loaded to the VRAM and executed that will change 1 byte in VRAM. If the
byte changed, the F18A is present, otherwise the system is running a stock VDP.

The GPU is a slightly modified 9900 CPU so you can use any standard 9900 assembler to write code for the F18A's GPU. Since the GPU
is inside the VDP it can only access the VRAM, plus an additional 2K of memory above the normal 16K of VRAM. The GPU's memory
map looks like this:

F18A version
GPU status data

>A000 to >Axxx (1010 XXXX XXXX XXXX
>B000 to >Bxxx (1011 XXXX XXXX XXXX

VRAM 14-bit, 16K @ >0000 to >3FFF (0011 1111 1111 1111)
GRAM 11-bit, 2K @ >4000 to >47FF (0100 x111 1111 1111)
PRAM 7-bit, 128 @ >5000 to >5x7F (0101 xxxx x111 1111)
VREG 6-bit, 64 @ >6000 to >6x3F (0110 xxxx xx11 1111)
current scanline @ >7000 to >7xx0 (0111 xxxx xxxX xxXx0)
blanking @ >7001 to >7xx1l (0111 xxxx xXxXXX xxx1)
32-bit counter >8000 to >8xx6 (1000 xxxx xxxx x110)
32-bit rng >9000 to >9xx6 (1001 xxxx xxxx x110)

)

)

® ® ® ®

"GRAM" means GPU-RAM and has nothing to do with "GROM or GRAM" of the TI console. It is just a coincidence. PRAM is the palette
RAM in the F18A, and VREG is the VDP registers to which the GPU has full read/write access.

The program will be loaded up high in VRAM. I like >3F00 for no particular reason, other than it is 256 bytes from the top of VRAM and
probably unused unless there is disk access going on (which there won't be during the test).

This is the code that will be loaded into VRAM for the GPU to execute:

0000 3F00 DEF MAIN
AORG >3F00
MAIN
3F00 04EO0 CLR @>3F00
3F02 3F00
3F04 0340 IDLE
3F06 0000 END

That is a total of 6 bytes of assembly, which is pretty small for the test. The GPU will clear the word at >3F00, which in this case is the
CLR instruction's opcode itself. You have to love self modifying code. :-) After the code runs, the value at VRAM >3F00 be >00 if the
F18A is present, otherwise it will be >04 on a stock VDP.

This is the code to load the program to VRAM. I'm including all the support routines here too so it is a complete program:

DEF MAIN

* VDP Memory Map

VDPRD EQU >8800 * VDP read data

VDPSTA EQU >8802 * VDP status

VDPWD EQU >8C00 * VDP write data

VDPWA EQU >8C02 * VDP set read/write address

* Workspace
WRKSP EQU >8300
ROLB EQU WRKSP+1

*

Workspace
RO low byte reqd for VDP routines

*

GPU
DATA >04E0 * 3F00 04E0 CLR @>3F00
DATA >3F00 * 3F02 3F00
DATA >0340 * 3F04 0340 IDLE
GPUEND
MAIN
LIMI O
LWPI WRKSP
* F18A Unlock
LI RO, >391C * VR1/57, value 00011100
BL QVWTR * Write once
BL QVWTR * Write twice, unlock
LI RO,>01E0 * VR1, value 11100000, a real sane setting
BL QVWTR * Write reg
* Copy GPU code to VRAM
LI RO, >3F00
LI R1,GPU
LI R2, GPUEND-GPU
BL QVMBW
& Set the GPU PC which also triggers it
LI RO,>363F
BL QVWTR
LI RO, >3700
BL QVWTR
* Compare the result in >3F00
LI RO, >3F00
BL QVRAD
MOVB @VDPRD,RO
JEQ PASS
FAIL
PASS

Kk kKKK KK KKKk kK KK KK K KK ok o K Kk ko kK Kk K K K Kk ko K Kk Kk ok ok ok K K Kk ok ok K K K K

* VDP Set Write Address

* RO Address to set VDP address counter to

VWAD MOVB @ROLB, @VDPWA * Send low byte of VDP RAM write address
ORI RO0,>4000 Set the two MSbits to 01 for write
MOVB RO, @VDPWA Send high byte of VDP RAM write address
ANDI RO, >3FFF Restore RO top two MSbits
B *R11

*// VWAD / VRAD

*

*

*

ek Kk ok ok ok ok o KKk ok ok ok ok ok ok ok ok ok ok K Kk ok ok ok ok o o Kk ko ok ok ok o ok ok ok ok ok ok o kKK ok ok

* VDP Set Read Address

* RO Address to set VDP address counter to

VRAD MOVB @ROLB, @VDPWA * Send low byte of VDP RAM write address
ANDI RO, >3FFF * Make sure the two MSbits are 00 for read
MOVB RO, @VDPWA * Send high byte of VDP RAM write address
B *R11

*// VRAD

ok ok ok Kok ok Kk Kk Kk Kk Kk Kk Kk Kk Kk Kok Kk Kok Kk Kok Kk KR Kk KR Kk KR Kk KR Kk KR Kk KR Kk Rk Kk K
* VDP Multiple Byte Write

* RO Starting write address in VDP RAM

* R1 Starting read address in CPU RAM

* R2 Number of bytes to send to the VDP RAM

* Rl is modified by the value of R2

* R2 is changed to 0

VMBW MOVB @ROLB, @VDPWA * Send low byte of VDP RAM write address
ORI RO0,>4000 * Set the two MSbits to 01 for write
MOVB RO, @VDPWA * Send high byte of VDP RAM write address
VMBWLP MOVB *R1+, @VDPWD * Write byte to VDP RAM

DEC R2
JNE VMBWLP
ANDI RO, >3FFF
B *R11

*// VMBW

Byte counter
Check if done
Restore RO top two MSbits

*

*

e ok ok ok K K ok K ok kK ok ko kR kK ok ok kK ok kK ok ok kK ok ok ok Kk ko
* VDP Write To Register
* RO MSB VDP register to write to
* RO LSB Value to write
VWTR MOVB @ROLB, @VDPWA
ORI RO0,>8000
MOVB RO, @VDPWA
ANDI RO,>3FFF
B *R11
*// VWTR

*

Send low byte (value) to write to VDP register
Set up a VDP register write operation (10

Send high byte (address) of VDP register
Restore RO top two MSbits

*

*

*

END

This code triggers the GPU:

L Set the GPU PC which also triggers it
LI RO, >363F
BL QVWTR
LI RO,>3700
BL QVWTR

The PC (program counter) in the GPU is 16-bit, just like the normal 9900, so it takes two bytes to set up the address. VR54 (>36) is
the MSB and VR55 (>37) is the LSB. After writing the LSB to VR55, the GPU automatically triggers and begins execution as the address
just set up. In this case it executes the CLR instruction, then goes idle via the IDLE instruction which is perfectly fine on the GPU (don't
use IDLE in the 9900 in your 99/4A though!)

Now the value at >3F00 is tested. The VRAD routine sets up a VDP read address without doing a read.

& Compare the result in >3F00
LI RO, >3F00
BL QVRAD
MOVB @VDPRD, RO
JEQ PASS

The MOVB moves the byte at >3F00 in VRAM into the MSB of RO. RO will now be >0000 if the GPU was present, or >0400 on a stock
VDP. The MOVB instruction will automatically compare RO to zero, so the JEQ will cause a jump if the RO == 0, i.e. the F18A is present.
Or you can put INE if you need the opposite jump.

Note that writing to VR54 and VR55 is the same as VR6 and VR7 on a stock VDP, so if the test for the F18A fails, you should restore
those values to something sensible, or simply set up your VDP accordingly now that you know if you have an F18A or stock VDP
(9918A/9928/9929).

Detection 2
If you don't want to go through all the mess of setting the SAT to disable sprites and wait for VSYNC, then another method would be:

. Unlock sequence

. Write to VR1 to disable the interrupt

. Read VDP status

. Set status register to SR1 (stays on SRO for the 9918A)
. Read VDP status

. Set status register back to SRO

. Enable interrupts

NOuTh WN

SR1 is the identity register and returns:

012 345 6 7
111 1] 000 | blank | horz_int

For the 9938/58, bit-2 will never be set, so you can determine a 9918A, F18A, 9938, 9958 with this method.

Enhance Color Mode (ECM)

The F18A has 64 12-bit programmable color registers. Depending on the ECM selected for tiles and sprites (which can be independently
set), the final color index is derived differently. Below is the part of the actual HDL used to set the index:

tile ps & pix_colr when ecm = 0 else -- Original color mode
tile ps(0) & pal_sel & pix0 when ecm = 1 else -- 1l-bit color
pal sel & pixl & pix0 when ecm = 2 else -- 2-bit color
pal_sel(0 to 2) & pix2 & pixl & pix0; == el eelEE

If that does not mean anything to you, read on...

To reference any of the 64 palette registers you need a 6-bit number (276 = 64) which is "000000" to "111111" or >00 to >3F hex.
Based on the ECM, a certain number of bits come from the pattern data, and the rest come from the per-tile attribute table and the
global "tile palette select" bits from VR24.

ECMO:

In ECMO the pattern data is not used directly in color selection, and this is the main difference between ECM0 and ECM1. Just like in the
original 9918A, in ECMO0 a '1' bit from the pattern specifies that the pixel will be the foreground color, and the actual 4-bit color index
comes from that tile's color group byte. Since the 9918A has 16 colors indexed with 4-bits, you still need two additional bits to specify
the 6-bit index in the F18A. These two additional bits come from the two Tile Palette Select bits in VR24:

TPS0:TPS1 | COLO:COL1:COL2:COL3

COLO0:COL3 come from the high-nybble or low-nybble of the color byte for each group of eight tiles. Thus, the 64 palette registers are

sectioned into four groups of sixteen color each. You can change the set of sixteen palette registers used for ECMO by simply changing
the TPS bits in VR24.

ECM1:

In ECM1 (and ECM2 and ECM3) the pattern data becomes color information directly used to select one of two colors from the palette.
The color table changes to the per-tile attribute table which contains 4-bits of palette selection data for the tile. Thus, the tile's attribute
byte provides 4-bits, and the pattern data provides 1-bit, so only 1-bit is used from the global TPS bits in VR24:

TPSO | COLO:COL1:COL2:COL3 | PATTERN-BIT

COLO0:COL3 are from the per-tile attribute entry for the tile. This sections the 64 palette registers into 32 2-color palettes, and the
pattern bit, '0' or '1', selects which of the two colors to use. This is also where the transparent bit from the tile attribute tables comes in
to play. If the transparent bit is enabled, a '0' pattern bit will be displayed at transparent instead of the color at the index palette
register. This is no different than the special color "0" in the 9918A being transparent instead of black. This is really just a way to
specify the difference between black and transparent.

ECM2:

ECM2 works just like ECM1 but picks up a additional color bit from the expanded pattern data. ECM2 makes the pattern table 4K-bytes
long instead of 2K-bytes. With 2-bits per pixel, the global TPS bits from VR24 are no longer used:

COL0:COL1:COL2:COL3 | PBO:PB1
PB = pattern-bit

COLO0:COL3 are from the per-tile attribute entry for the tile. This sections the 64 palette registers into 16 4-color palettes, and the

pattern bits, '00', '01', '10, and '11', select which of the four colors to use. The transparent bit from the attribute table is used to
determine if index '00' (from the pattern data) is transparent or the color at that index.

ECM3:

ECM3 adds a final bit and expands the pattern table out to 6K-bytes. There are now 3-bits per pixel for a total of 8 possible colors for
any given pixel in any of the 256 tiles. Only 3-bits are used from the per-tile color bits:

COLO:COL1:COL2 | PBO:PB1:PB2

COLO0:COL2 are from the per-tile attribute entry for the tile. This sections the 64 palette registers into 8 8-color palettes, and the
pattern bits, '000', '001', '010, '011', '100', '101', '110, and '111', select which of the eight colors to use. The transparent bit from the
attribute table is used to determine if index '000' (from the pattern data) is transparent or the color at that index.

The pattern tables expand consecutively in VRAM directly following the original 2K pattern table. Each new 2K pattern table are
configured as "bit-planes" and add 1-bit of color data per table (or plane):

Bytes in VRAM, offset from the Name Table Base Address from VR2:

NTBA + 0 NTBA + 1
0l11121314151617 0111213141516|7| Pattern Plane 1 LSbit (ECM1,ECM2,EM3)
10101111 00000110

NTBA + 2048 . . . NTBA + 2049
0l11121314151617 0111213141516|7| Pattern Plane 2 (ECM2,ECM3)
00001111 10001001

NTBA + 4096 . . . NTBA + 4097

011121314151617] 1011/213141516|7| Pattern Plane 3 MSbit (ECM3)

11110001 01010101
Pixel index values. Pattern Plane 0 is the LSbit:

10101111 00000110 ECMI color indexes (same as pattern plane 1)
10103333 20002112 ECM2 color indexes, pattern planes 2+1

54543337 24042516 ECM3 color indexes, pattern planes 3+2+1

For example, the first "4" index above is formed by taking 1-bit from each plane
and forming a binary value that becomes the color index:

P3 P2 Pl - pattern plane
4 2 1 - binary place value

1 0 0 - data from each plane

Every 8-bytes in each pattern plane describes one tile, just like the 9918A. Shown here, the tables are defining the color indexes for the
first two rows of tile 0.

I set up the data in planes, vs. packed consecutively in bytes, for a few reasons:

First, with 3-bits per pixel in ECM3, color data for a pixel would cross byte boundaries and this would seriously complicate things on the
hardware side and for the programmer.

Second, using pattern planes like this means you can use your existing pattern data in ECM2 and ECM3 and just add additional pattern
data as necessary to get the extra colors.

However, it does make it harder to define the pattern data, and I'm hoping to produce a dedicated editor for this. In the mean time,
sometimers99er has graciously expanded his Flash-based sprite editor to support the 8 color possibility of ECM3.

Setting palette registers

The F18A has 64 palette registers (PR) that are 12-bits each, which gives it a color palette of 4069 colors. Which Palette Register (PR)
is used to specify the color of a given pixel depends on a lot of settings. The PRs are grouped into "banks" depending on how many bits
are used to resolve a pixel's color. In the 9918A compatible modes (1-bit per pixel (bpp)), there are 4-banks of 16-colors each. VR49
has two bits that control which of the 4-banks will be used for tiles in 1-bpp modes, which means you could set up each of the 4-banks
with 16 different colors and change to the new palette with a single register write.

In the Enhanced Color Modes (ECM), there are more bits used to specify a single pixel's color, and thus the number of palette banks
grows, but the number of colors in each bank shrinks.

With 2-bpp, there are 16-banks with 4-colors each, and the 2-bits for each pixel select the color from the bank. With 3-bpp, there are

8-banks with 8-colors each.

There are a lot of options for colors, but in this example I'll stick to just updating the palette registers themselves which allows you to
use any of the 4096 colors.

NOTE palette changes survive a soft-reset! If you modify the palette and then exit, those changes will remain in effect until the
system is power-cycled or hard reset (a cartridge is plugged in, etc.)

Palette registers are numbered 0 to 63 and consist of 12-bits to specify a color in the format:

BYTE 1 | BYTE 2
----rrrr | ggggbbbb

Because there is only one "data write port" to the 9918A (mapped at address >8C00 on the 99/4A) and subsequently to the F18A as
well, the F18A has a "Data Port Mode", controlled by a bit in VR47, to select between writing data to VRAM or to Palette Registers.

Two byte writes are required to update a single palette register. Palette registers are written to (they cannot be read by the host CPU)
by setting the Data Port Mode (DPM) bit in VR47 to 1, then writing to the VDP data port as normal. After the second byte is written, the
12-bit color will be latched into the specified palette register. Side note: a nice advantage of the GPU is that it has full read/write access
to the palette registers using normal word instructions like MOV.

If the auto increment bit in VR47 was not set, then the DPM automatically falls back to the default "write to VRAM" mode after the
second palette byte has been written.

If a large number of palette registers need to be updated, setting the auto increment flag will keep the DPM in palette mode until VR47
is written again to return to normal VRAM write mode, or the palette address rolls over to 0, which will force the DPM back to VRAM
mode. This is a fail-safe to prevent the VDP from inadvertently getting stuck in the write-to-palette DPM.

DMP is also exited any time *any* VDP status register is read, the VDP is externally reset, the palette address rolls over to 0, or by
setting VR47 DPM bit to 0.

VR47 controls data-port mode and palette address:

0 | 1 1234567
DPM | AUTO INC | PAL REG ADDR

DPM = Data Port Mode
0 = VDP data writes go to VRAM as normal
1 = VDP data writes go to the palette

AUTO INC = Auto Increment

0 = Do NOT increment the palette address after a single *palette* write, which consists of *TWO* bytes written to the VDP. After the
second byte has been received, the addressed palette register will be updated and the Data Port Mode defaults back to normal VRAM
for writes to the VDP. This mode of operation is intended for updating a single palette register at a time.

1 = Increment the palette address every time a palette register is updated, which consists of *TWO* bytes written to the VDP with the
DPM bit = 1. This allows multiple palette registers to be updated consecutively and quickly.

PAL REG ADDR = Palette Register Address
This is the address of the single palette register to update, or the first palette regiser to update when AUTO INC = 1.

Here is an example of writing PR4, which is normally "dark blue" (RGB: 54F) to a pure blue (RGB: 00F):

LI RO, >2F84 * Reg 47, value: 1000 0100, DPM = 1, AUTO INC = 0, PRA4.
BL QVWTR
LI R1,>000F * RGB: 00F, or pure blue in place "dark blue"

& Two bytes written to the VDP now go to PRI
MOVB RO, @VDPWD
SWPB RO
MOVB RO, @VDPWD

After the second write (MOVB instruction), the DPM will fall back to normal VRAM mode since the auto-increment bit in VR47 was not
set.

If you were going to update a whole set of registers, then you could use the auto-increment feature. If your update does not cause the
PR number to roll over to zero, then you must leave DPM mode after updating:

& Update the first 7 palette values from the host CPU
& Palette 0 is not updated to keep the screen color stable.
LI RO, PALO+2

LI R1,>0111 * Add 1 to each R,G,B value
LI R2,7

INCPAL
A R1, *RO+ * Update the 12-bit color
DEC R2

JNE INCPAL

LI RO, >2FC1 * Reg 47, value: 1100 0001, DPM = 1, AUTO INC = 1, start PRI1.
BL QVWTR
B Every two bytes written to the VDP now go to the palette registers.
LI RO, PALO+2
LI R2,14 * Each 12-bit palette entry requires 2 bytes
UPDPAL
MOVB *R0+, @VDPWD
DEC R2
JNE UPDPAL
LI RO, >2F00 * Reg 47, value: 0000 0000, exit DMP
BL QVWTR

*x

* Standard color palette

*

* 12-bit color format: ---rrrrggggbbbb
EVEN

PALO
DATA >0000 * Transparent
DATA >0000 * Black
DATA >02C3 * Medium Green
DATA >05D6 * Light Green
DATA >054F * Dark Blue
DATA >076F * Light Blue
DATA >0D54 * Dark Red
DATA >04EF * Cyan
DATA >0F54 * Medium Red
DATA >0F76 * Light Red
DATA >0DC3 * Dark Yellow
DATA >0ED6 * Light Yellow
DATA >02B2 * Dark Green
DATA >0C5C * Magenta
DATA >0CCC * Gray
DATA >0FFF * White

PALOE

Standard palette register values

When the F18A is powered up, it defaults the four palettes as follows:

#0 standard 9918A colors

#1 an EMC1 version of palette #0
#2 IBM CGA colors

#3 an ECM1 version of palette #2

Note that palette changes will survive a reset, i.e. plugging in a cartridge or software reset. They only assume these defaults at power-
on.

-- Palette 0, original 9918A NTSC color approximations

x"000", -- O Transparent
x"000", -- 1 Black
x"2C3", -- 2 Medium Green
x"5D6", -- 3 Light Green
x"54F", -- 4 Dark Blue
x"76F", -- 5 Light Blue
x"D54", -- 6 Dark Red
x"4EF", -- 7 Cyan

x"F54", -- 8 Medium Red
x"F76", -- 9 Light Red
x"DC3", -- 10 Dark Yellow
x"ED6", -- 11 Light Yellow
x"2B2", -- 12 Dark Green
x"C5C", -- 13 Magenta
x"Cccc", -- 14 Gray

x"FFF", -- 15 White

-- Palette 1, ECM1 (0 index is always 000) version of palette 0
x"000", -- 0 Black
x"2C3", -- 1 Medium Green
x"000", -- 2 Black
x"54F", -- 3 Dark Blue
x"000", -- 4 Black
x"D54", -- 5 Dark Red
x"000", -- 6 Black
x"4EF", -- 7 Cyan

x"000", -- 8 Black
x"Ccc", -- 9 Gray

x"000", -- 10 Black
x"DC3", -- 11 Dark Yellow
x"000", -- 12 Black

x"C5C", -- 13 Magenta

x"000", -- 14 Black

X"FFF", -- 15 White

-- Palette 2, CGA colors

x"000", -- 0 >000000 (O 0 0) black
x"00A", -- 1 >0000RA (O 0 170) blue
x"0AO0", -- 2 >00AR00 (0 170 0) green
x"0AA", -- 3 >00RARA (0 170 170) cyan
x"A00", -- 4 >AA0000 (170 0 0) red
x"AOA", -- 5 >AA0OAA (170 0 170) magenta
x"A50", -- 6 >AA5500 (170 85 0) brown
x"AAA", -- 7 >AAAAAA (170 170 170) light gray
x"555", -- 8 >555555 (85 85 85) gray
x"55F", -- 9 >5555FF (85 85 255) light blue
x"5F5", -- 10 >55FF55 (85 255 85) light green
x"SFF", -- 11 >55FFFF (85 255 255) light cyan
x"F55", -- 12 >FF5555 (255 85 85) light red
x"FS5F", -- 13 >FF55FF (255 85 255) light magenta
x"FF5", -- 14 >FFFF55 (255 255 85) yellow
xX"FFF", -- 15 >FFFFFF (255 255 255) white

-- Palette 3, ECMl (0 index is always 000) version of palette 2
x"000", -- 0 >000000 (O 0 0) black
x"555", -- 1 >555555 (85 85 85) gray
x"000", -- 2 >000000 (O 0 0) black
x"00A", -- 3 >0000R2A (O 0 170) blue
x"000", -- 4 >000000 (O 0 0) black
x"0A0", -- 5 >00AR00 (O 170 0) green
x"000", -- 6 >000000 (O 0 0) black
x"0AA", -- 7 >00AAAA (0 170 170) cyan
x"000", -- 8 >000000 (O 0 0) black
x"A0O0", -- 9 >AA0000 (170 0 0) red
x"000", -- 10 >000000 (O 0 0) black
x"AOA", -- 11 >AAOOAA (170 0 170) magenta
x"000", -- 12 >000000 (O 0 0) black
x"A50", -- 13 >AA5500 (170 85 0) brown
x"000", -- 14 >000000 (O 0 0) black
xX"FFF" -- 15 >FFFFFF (255 255 255) white

Multi-color sprites

The color enhancements to sprites and tiles, as far as the pattern representation goes, works the same way. As you know, the original
VDP could support 2-colors per sprite with one of the colors always being transparent, thus we tend to think of sprites a having one
color. The sprite's color could be any of the sixteen original colors, including transparent which presents some interesting possibilities.

In the original sprite pattern data, a '0' bit specifies a transparent pixel and also does not count in collision detection. However, a '1' bit
in the pattern specifies that the sprite has a pixel at that location, regardless of the color. That is an important distinction to keep in
mind, because is allows you to have a pixel (1-bit in the pattern) that is transparent, i.e. the sprite's main color is set to 0.

So, the bit patterns in the original sprite (and tile) modes don't actually represent the color, they represent if the sprite has a pixel at
that location. The color data is derived from a different location, and in the case of sprites the color comes from the Sprite Attribute
Table (SAT) entry for the given sprite.

When moving to the ECM (enhanced color modes) for sprites and tiles, the pattern data itself *does* actually select a color from a
palette. However there is a distinction between tiles and sprites when it come to the "zero-index", i.e. color data "0", "00", or "000".
For sprites the zero-index is *ALWAYS* transparent, so the number of actual colors you can display is 1, 3, or 7 vs 2, 4, or 8. In the
ECMs for tiles there is an attribute byte for each tile "name" (0-255) were you can specify if the zero-index is transparent or the color
at that index.

To provide more pixel data, the extra pattern bits need to come from some where. To keep some sort of compatibility with existing
patterns, I chose to implement the extra bits via "bit planes". This allows you to start off with some existing sprite or tile patterns, and
expand them to support more colors at a later time in your development. Also, the 3-bpp mode does not pack neatly into a single byte
had I tried to use a linear bit-packing method.

The down-side to bit-planes is that making patterns is more of a pain. Luckily sometimes99er has implemented some initial support for
the multi-color sprites via his sprite editor.

For example, for a 2-bpp pattern you need two bits to specify which of the 4-colors to use for a given pixel. There are four possible
values:

bits index color
00 0

This is simply binary representation, and for 3-bpp it becomes "000" to "111". Note that the least significant bit comes from the original
pattern table (bit plane), and the 2nd or 3rd bits come from subsequent bit-planes.

For example, here are two pattern bytes that will have four pixels next to each other, each being one of the four possible colors in a
given palette (which is specified by a tile's or sprite's attribute byte).

01010000 pattern-plane 0
00110000 pattern-plane 1, 2K (2048) byte-offset from bit-plane 0 (the original pattern table)

01230000 color index values.

For each byte that makes up a sprite's or tile's pattern, there are one or two more bytes in the additional pattern-planes that are used
to make the final color index for a given pixel. The additional pattern-planes are always 2K (and 4K for 3-bpp) bytes offset from the
Sprite Pattern Generator Table (SPGT). This means that in 1-bpp the SPGT is the normal 2K, for 2-bpp the SPGT is 4K, and 3-bpp it is
6K.

To get a pixel's color index you combine the bits *vertically* from each pattern byte in each plane. So, the second pixel is "01", or
index 1. The byte from the first pattern-plane represents the LSbit in the final index value. Shown below is the sprite data using 3-bpp
to show all eight colors in a single row:

bits color index

000 0 (0 is always transparent for sprites)
001 1
010 2
011 3
100 4
101 5
110 6
111 7

the bits are combined vertically
| | |
VVVVVVVYV
01110]110]110|1| LSbit pattern-plane 0, 2K total
0|0j111(0]0]111] pattern-plane 1, 4K total, 2048 bytes offset from the SPGT
0/01010[1/1|1|1| MBbit pattern-plane 2, 6K total, 4096 bytes offset from the SPGT
| | |
VVVVVVVYV
011121314151617|] color index values.

The first step to making a multi-color sprite is to make a pattern that has data for all the bit-planes, which depends on the number of
colors you want. You set up the sprite tables as you normally would, load the patterns, set up the SAT, and finally enable the ECM for
sprites.

VR49 controls the ECM for both tiles and sprites:

0 1 2 3 | 4 | 5 | 6 7
FIXED_EN ROW30 ECMTO ECMT1 | Y REAL | LINK | ECMSO ECMS1 |

The bit fields for ECM(T)iles and ECM(S)sprites are:

00 - 0 - original 9918A mode

01-1-1-bpp
10 - 2 - 2-bpp
11 -3 - 3-bpp

Thus, to enable sprites to use 2-bpp just write >02 to VR49. Heh, all that talking just to say that... Really all the detail is in setting up
the patterns, which is just additional data written to the VRAM.

RasmusM, on 12 Sept 2013 - 9:17 PM, said: -
Do all sprites share the same palette of 4 or 8 colors, or can each sprite use a different palette?

In the enhanced color modes (ECM), each sprite can reference any "palette".

There are 64 Palette Registers (PR) that are 12-bits each. Each PR is programmable and you can set any PR to any value (color) from
>000 to >FFF (4095), i.e. there are 4-bits per red, green, and blue. The number of PRs is fixed, but the number of "palettes" at any
time depends on the current ECM.

Having 64 PRs means you need 6-bits to address a PR for a pixel. In the original color mode, the sprite's color is an index into 1 of 4

main palettes. In the Enhanced Color Modes, the pattern data becomes part of the palette index. To complete the 6-bits to address a
PR, there are 2-bits for sprites and 2-bits for tiles that come from the new "palette select" VDP Register (VR) VR24:

10

http://atariage.com/forums/index.php?app=forums&module=forums§ion=findpost&pid=2828636

VR24:
0 1 2 3 4 5 6 7 (Note, I use TI's bit numbering)
XX XX S0 S1 XX XX TO T1

SO and S1 are the "sprite palette select” and TO and T1 are the "tile palette select". These two bits (two for sprites, two for tiles) are

used to complete the 6-bit PR address when there are not enough pattern bits (original mode, ECM1 ECM2). Thus, for sprites, there are
three places data comes from to select a pixel's color:

VR24: PSO&PS1 (sprite palette select bits)
Sprite attribute table: CS0 CS1 CS2 CS3 (color select)
Sprite pattern data: 0 to 3 bits

PSO0&PS1 can be: 00, 01, 10, or 11, and are always the MSbits of the palette address, so they can select 1 of 4 groupings of PRs:

00xxxx PRO to PR15
0lxxxx PR16 to PR31
10xxxx PR32 to PR47
1lxxxx PR48 to PR63

In the original color mode (ECMO0), xxxx comes from the Sprite Attribute Table and will thus select 1-0f-16 colors in the "palette"

specified by the PSO&PS1 bits from VR24. This defaults to "00" and PRO to PR15 are defaulted to the original 99/4A colors. In original
mode, *pattern data* does not contribute to selecting a sprite pixel color, and simply indicates if the pixel is visible or not.

In ECM1 to ECM3, pattern data becomes part of building the PR address. The more pixel data, the less the PSO&PS1 are used, and the
less of the sprite's color attribute (CSO to CS3) is used:

PR Address bit: 0 1 2 3 4 5)

original mode: ps0 psl cs0 csl cs2 cs3 (VR24 S0&S1 bits and SAT color index)

1-bit (ECM1) : psO csO0 csl cs2 cs3 px0 (VR24 SO bit only, SAT color index, pattern bit)
2-bit (ECM2) : csO0 csl cs2 cs3 pxl px0 (SAT color index, two pattern bits)
3-bit (ECM3) : cs0 csl cs2 px2 pxl px0 (3 SAT color index bits, three pattern bits)

In ECM1 there are effectively 32 "palettes" with two colors each. VR24 PS0 and the SAT color (5-bits) make up the palette selection
from 0 to 32, and the pattern bit selects one of the two colors in the "palette". Note that a sprite pattern value of zero "0", "00", or
"000" is *always* transparent. So ECM1 for sprites is really only useful over original mode to enable the other enhanced sprite
features.

In ECM2 there are effectively 16 "palettes" with four colors each. The sprite palette select bits from VR24 are now unused, and only the
sprite's color from the SAT and the pattern data are used. So, in ECM2 the sprite's color in the SAT becomes a "palette select" from 0 to
15, and the two pattern bits select one of the four colors in the palette. Again, color "00" is transparent.

In ECM3 there are effectively 8 "palettes" with eight colors each. Only three bits from the sprite's color in the SAT are used to select the
palette, and the three pattern bits select one of the eight colors in the palette. Color "000" is transparent.

So it is really a matter of how the 64 PRs are grouped and addressed based on the ECM. You can reprogram any of the PRs at any time,
which will change the color of any pixel referencing that PR.

Scrolling

Scrolling is one of the areas that I ended up spending a lot of time on, and subsequently there are a *lot* of options. So, let me start
with the basics and build up from there.

Notel The term "pixel" here refers to what I call a "fat pixel", which is made up of a 2x2 block of VGA pixels, and represents the
9918A's pixel resolution of 256x192.

Note2 Let me say right now that when I was implementing the scrolling, I was not considering the text modes because they use a
special pixel counter that is not a multiple of 8 (and that is critical to the scrolling hardware). Scrolling will do *something* in the text
modes, but it won't be what you expect. Everything here assumes GM1 for the most part.

The guts of the scrolling are the horizontal and vertical scroll registers. These are a full 8-bits each and cause the display to be adjusted
in 1-pixel increments.

When you start scrolling, you immediately become aware of several problems, the first being what should display on the left or right (or
top and bottom) as you start to scroll. This is where the idea of "pages" comes in to play.

There are two "page" bits that control how big the display is horizontally and vertically. With a "0" horizontal page size, if you scroll left

or right the display wraps at the edges. With a "1" horizontal page bit, you now have two name tables in VRAM that make a virtual
display size of 64x24 tiles, of which you can see a 32x24 window:

11

virtual screen

physical screen

So, as you increase the horizontal scroll register, instead of the display wrapping, you start to see what is in the second name table. In
memory, the name tables are 1K each and are consecutive. The name table base address can still be used to locate the name tables,
but the size grows 1K for each additional "page" (of which there can be 1, 2, or 4).

VRAM Name Table address example
>0000 start 1lst name table, page 0
>02FF end lst name table, page 0 (767 bytes)

>0300 256 bytes unused
>03FF ...

>0400 start 2nd name table, page 1
>06FF end 2nd name table, page 1

P I page O0..... locosoo page 1l.....
21
22
B3] ccoooso00000000 W67 ococoooscocono 1791|
****** // Y ameeias e sS4 () f=====rr

Also, in a 1-page setup, you would normally have to mask-off the left-most and right-most columns (0 and 31) and constantly provide
new display information to "scroll in" or "scroll out". With the extra horizontal page, you still need to do updates to provide the
appearance of endless scrolling, but you don't have to mask the edge columns and you have at least 16 columns of buffer space to
work with on either side, or a full screen depending on how you set things up.

The vertical page size works the same way, except instead of the page-1 name table being displayed next to page-0, it would show up
below page-0 as you start to scroll vertically:

01234---==--=-- 31
****** 0 oo ol f=====|
@0y 2000c00055000 |
Bllccoooo page 0..... |

21

22

23 ccoo0cco000000aa 767
ffffff Yy s

2411024,1025,1026...|

25

26ccooco page 1..... |

45

46

A7 o000cc0000000 1791
****** 0l oo ol fr====te

The final configuration would be a "1" for both the horizontal and vertical page size, in which case there are now four name tables:

VRAM Name Table address example
>0000 start 1st name table, page 0
>02FF end 1lst name table, page 0 (767 bytes)

>0300 256 bytes unused
>03FF ...

>0400 start 2nd name table, page 1
>06FF end 2nd name table, page 1

>0700 256 bytes unused
>07FF ...

>0800 start 3rd name table, page 2

12

>0AFF end 3rd name table, page 2

>0B00 256 bytes unused
>0BFF ...

>0C00 start 3rd name table, page 3
>0EFF end 3rd name table, page 3

The 4-page mode gives you the ability to scroll around a 32x24 window on a virtual 64x48 tile field. Also, with the ROW30 bit, the 24
rows expands to 30 rows, so your display becomes a 32x30 window on a 64x60 tile field. Also with the ROW30 bit set, the name tables
go from 768 bytes (32*24) to 960 bytes (32*30) with only 64 bytes of unused memory between the pages. This was one of the main
reasons for placing the pages on 1K boundaries (not to mention the technical reasons).

The page layout scheme was inspired by the NES, which has a very similar setup.

hsize|vsizel|hscroll|vscroll |name tables

——————————— s At
0 0 | wraps | wraps | 1 (page 0)
1 0 | pg0/1 | wraps | 2 (page 0 and 1)
o 1 | wraps | pg0/1 | 2 (page 0 and 1)
1 1 | pg0/1 | pg2/3 | 4 (page 0, 1, 2, 3)

There are also two more bits associated with the horizontal and vertical size bits, and those are the horizontal and vertical "page start"
bits. These control which page is the "starting" page when the horizontal or vertical size is "1".

Think about when you scroll to the right a little (increase the horizontal scroll register) with a horizontal size of "0". If the horizontal
scroll is at 16, for example, as the display is drawn the left of the screen starts with data for column 2. But, when you get to column 31
in VRAM you still have 2 columns on the screen to display. So the F18A uses the data from columns 0 and 1 to finish the row. This is
the wrapping in a single page setup.

Now, if you have a horizontal size of "1", then the 2 columns of data to finish off the row (using the example above) would come from
columns 0 and 1 of the second page.

Here is where the "start page" settings come in to play. In the example above, say you have the horizontal scroll register set to 255
(max). This means you are displaying one *pixel* of data from the first page (page 0) before you start using data from page 1, which
is entirely displayed except for 1 pixel. At this point, if you wanted to continue scrolling, you need to be able to "start" on page 1 and
use data from page 0 as you continue to scroll. This is what the "start page" bit does.

After all that I came to the realization that you would probably want to keep part of the display still while you scrolled, like for scores
and such. So I added a "top border" register that would let you specify a line above which scrolling would not affect the display. So, you
could set the top-border to 8 to keep the first row still while the remaining rows would scroll around.

Of course the top-border soon expanded into a bottom border, then a left and right border. Therefore, you also have four registers that
can define a "scroll window" on a pixel level. Inside the window the tiles scroll, outside the window the tiles are fixed.

The top-border was originally called the top "banner" (because I was only going to have that one additional register), and I realized you
might want to have only what is on the first name table (page 0) display at the top while having a horizontal size of "1" (two pages
wide). So there is also a setting to control how "wide" the top border is, i.e. 1 page or 2 pages. It can really make for some strange
effects and was really designed with side-scrolling games in mind, but I tried not to do that though, i.e. create features for specific
purposes.

On top of all of that, I thought it would be nice to have control over how each tile is affected by the scroll registers. Thus the "fixed
map" was created. The fixed map is a bitmap of the 32x24 (or 32x30) tile display, each each bit determines if that tile will be affected
by the scrolling or not, i.e. "fixed" in place. The fixed table has a new base-address register and can be located on 128-byte boundaries
(I think, I can't remember right off hand). Each byte controls 8 tiles on the screen:

13

tOItl|t21t3(t4|t51t6ltT| ... [t24|t25|t26]1t27|t28]t29|t30(t31]

Each row requires four bytes (4*8=32), and there are 24 rows, so a total of 96 bytes for a 32x24 name table and 120 bytes for a
32x30 name table (ROW30 set).

The sprites and the bitmap layer (BML) are *not* affected by the scroll registers. However, the BML can be moved around at a pixel
level via is own xy location registers, and can be set above or below the tiles (have priority over tiles or not). So, with the scrolling,
scroll borders, fixed map, BML, and sprites you can probably come up with some pretty nice effects.

Scrolling pages

The F18A provides support for multiple "pages" when scrolling, and a "page" is simply additional "name tables" (NT) in the traditional
sense of the 9918A VDP. There can be up to four NTs which are always consecutive in VRAM starting with NT1 which begins based on
the NT-base in VR2.

When either the horizontal scroll register (HSR) or vertical scroll register (VSR) are incremented, there needs to be something to
display at the edges where visual data is coming into view. Since scrolling can take place in two directions at once, there are four
options for where the new data can come from:

1. One page, both horizontal and vertical directions wrap.
2. Two horizontal pages, vertical direction wraps.

3. Two vertical pages, horizontal direction wraps.

4. Four pages, no wrapping.

When using scrolling, the Name Table Base Address (NTBA) in VR2 is limited to 2-bits instead of the normal 4-bits. Thus the NT start
address can only be located on 4K boundaries instead of 1K boundaries when using scrolling:

VR2:

MSB LsSB

01 2 3 4 5 6 7

X X X X A0 Al A2 A3 - Normal

X X X X A0 Al VPS HPS - Vertical / Horizontal Page Start from VR29

When scrolling, the HPS and VPS bits come from VR29:6 and VR29:7 and change from 0 -> 1 or 1 -> 0 depending on the horizontal /
vertical page size selections in VR30. Allowing these bits to toggle, but having VR30:1 / VR30:2 set to one (1), is what causes a new
name table to be selected when scrolling in either direction. If VR30:1 / VR30:2 are zero (0) for a given direction, then wrapping occurs
in that direction instead of using a new name table.

VR29:

MSB LsSB
01 2 3 4 5 6 7
X X X X X X HPS VPS

VR30:
MSB LSB
0 1 2 34567

HBSIZE HPSIZE VPSIZE SPRITEMAX

HBSIZE = horizontal banner size
HPSIZE
VPSIZE

Because the VPS has a higher bit-value (bit-2) than the HPS bit (bit-3) in the VRAM address, the horizontal name table will always
come in memory before the vertical name table. This also means that two-page scrolling in the vertical direction will always use name
tables 1 and 3, and skip name table 2. Two-page scrolling in the horizontal direction will always use name tables 1 and 2.

horizontal page size
vertical page size

VRAM Address, l4-bits:

14 13 12 11 10 9 8 7 6 54321 - number of bits
8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1 - bit place value

MSB LSB
0123 45678910 11 12 13 14 - bit number (reverse of "industry standard")
VR2:4..7 y raster counter x MOD 8 - normal
MSB LSB
0 1 2 | 3 45678910 11 | 12 13 14
VR2:4..5 VPS | HPS y modified | x modified - scrolling

It can be seen that the VSP will select between 0 (0K) or 2048 (2K) offset, and HPS will select a 0 (0OK) or 1024 (1K) offset. VR2 is
reduced to 2-bits and can locate the four name tables at 0K, 4K, 8K, or 12K when scrolling is being used.

The X pixel counter and Y raster counter are modified by the horizontal and vertical scroll registers, and when the counters reach their

14

limits they reset and cause the VPS or HPS to toggle if the page size is one (1) in VR30, thus causing a new name table to be used,
otherwise wrapping occurs in that direction.

Scroll Limit Registers

The F18A has four registers: VR50, VR51, VR52, and VR53 that can be used to limit the area in which the scroll registers will affect the
tiles. The registers are a full byte each, thus they can define a Top, Bottom, Left, and Right boundary at the pixel level. The top (VR50)
must be less than the bottom (VR51), and the left (VR52) must be less than the right (VR53). A value of zero disables that particular
boundary.

For example, if VR50 (top boundary) has a value of 29, then all lines from 0 to 29 will not be affected by scrolling, but lines 30 to
191/239 (for row30) will be affected by scrolling.

Used together, the four registers can be used to define a "window" in which scrolling takes place, but outside the window the display is
fixed.

Fixed Map

The "Fixed Map" is used to allow any tile to be "fixed" in place and not affected by scrolling. The Fixed Map is a bit-map, so there is 1-
bit per tile to control if the tile is fixed or affected by scrolling. VR10 specifies the Fixed Map Base Address and is 7-bits, so the table can
be located on 128-byte boundaries. VR49 contains a "fixed enable" bit which must be one (1) to enable the fixed map.

The scroll limit registers and fixed map can be used at the same time. When a tile, pixel row, or pixel column is not affected by
scrolling, it will always display tile information from the first name table, i.e. "Page 1".

Bitmap Layer
In the F18A, the bitmap layer (BML) uses 2-bits for each pixel, so 1-byte in VRAM holds 4-pixels. That means the bits for each pixel can
identify 4 possible colors: "00", "01", "10", and "11" in binary or 0, 1, 2, and 3 in decimal.

PX0-0 PX0-1 PX1-0 PX1-1 | PX2-0 PX2-1 | PX3-0 PX3-1 |

But you need 6-bits to identify one of the 64 palette registers to use, so the extra 4-bits come from a new VDP Register related to the
BML and are called the "palette select" bits. So taken together, 4-bits come from the new register, and 2-bits come from each pixel:

32 16 8 4 2 1 (binary place value)
0 1 2 S] 4 5 (bit number)
PSO PS1 PS2 PS3 PX0 PX1 (bit source)

6-bits --> PRO --> 12-bits of color --> RGB output
PRl --> 12-bits of color --> RGB output

PR63 --> 12-bits of color --> RGB output

Since the top 4-bits come from the Palette Select, they can select 1-of-16 groups of 4-colors in the total range of 64 palette registers.
The pixel data selects 1 of 4 colors in that group. This is exactly how the "color groups" of the 9918A work for each group of 8 tiles in
the color table, only here we are dealing with pixels and groups of 4 instead of groups of 8.

The BML also has an option to use pixel value "00" as transparent instead of an index into a palette register, which gives you 3 colors
and transparency (either background or the tile layer) instead of 4-colors. It all depends on what you want to do.

Plotting Pixels on the Bitmap Layer (BML) and GM2

The GPU can plot a BML pixel, given an XY location, in a single instruction. It can also read a pixel, conditionally set a pixel based on
the current pixel color, read and write a pixel at the same time, just calculate a pixel's VRAM address, or calculate a GM2 pixel's
address!

I call the new instruction PIX, and it uses the same opcode as the 9900's XOP instruction, so you can use any 9900 assembler to code

15

the PIX instruction. The F18A GPU does not have a Workspace Pointer (since its registers are hard-wired instead of memory-base), so
XOP was not implemented.

The XOP format is multi-addressing for the source, and workspace register for the destination. This makes it very flexible for the PIX
instruction. Here are the options you can use with PIX:
Format: MAxxRWCE xxOOxxPP

calculate the effective address for GM2 instead of the new bitmap layer
use the remainder of the bits for the new bitmap layer pixels

retrieve the pixel's effective address instead of setting a pixel
= read or set a pixel according to the other bits

read current pixel into PP, only after possibly writing PP

do not read current pixel into PP

do not write PP

= write PP to current pixel

= compare OO with PP according to E, and write PP only if true
= always write

= only write PP if current pixel is equal to 00

= only write PP if current pixel is not equal to 00

=
|
oOororORrRrOROROR
1

00 pixel to compare to existing pixel

PP - new pixel to write, and previous pixel when reading
The source value is the XY location as two bytes, the X being the MSB. Since the XOP supports multiple addressing for the source
parameter, you can use a register or memory location. XY values are 0 to 255.

The destination parameter is the PIX instruction as indicated above. If you use the M or A operations (calculate addresses only), the
destination register will contain the address after the instruction has executed. If you use the R operation, the read pixel will be in PP
(over writes the LSbits). You can read and write at the same time, in which case the PP bits are written first and then replaced with the
original pixel bits.

Example (this is code running on the GPU):

LI RO0,>2020 * xy=32,32
LI R1,>0001 * write a pixel of "01"
XOP RO,R1 * PIX RO,R1l

- @® =
EVEN * make sure XPIX is an even address
XPIX BYTE 50
YPIX BYTE 50

LI R1,>0801 * Read existing pixel at XPIX,YPIX and write a "01" pixel in its place
XOP @XPIX,R1

- @® =
LI R1,>0302 * ONLY write a 2("10") pixel if the current pixel is 0("00")
XOP @XPIX,R1

—or -
LI R1,>0213 * ONLY write a 3("11") pixel if the current pixel is NOT 1("01")
XOP @XPIX,R1

- or -
LI R1,>8000 * Get the GM2 effective address of the pixel at XY location
XOP @XPIX,Rl * Rl now contains the VRAM address byte containing the pixel.
* Doing (XPIX AND >07) will isolate the bit in the specified byte.

The PIX instruction was really designed to assist with the BML, so using it with GM2 does require a little extra work to update the pixel

in the appropriate byte. However, the address of the byte that contains the pixel to be updated it calculated for you, which replaces all
this code (from the E/A manual page 336):

MOV R1,R4
SLA R4,5

SOC R1,R4
ANDI R4,>FF07
MOV RO,RS
ANDI RS, 7

A RO, R4

s R5, R4

This is a very nice routine, and it took me a long time to figure out how it worked. But once I did, I was very impressed with what was
going on, and I was also intrigued to know that all this code does is bit-twiddling. Since bit-twiddling is something that takes a lot of
work via programming, but something that hardware does naturally, all that code can be replaced with a single bit of hardware (shown
here as HDL):

gm2_addr <= "00" & (
(pgba & src_oper (8 to 12) & "00000" & src_oper (13 to 15)) + -—y/ 8 * 256 + (y % 8)
("0000" & src_oper (0 to 4) & "000")); -- + (x AND >F8) (mask out the pixel index bits

16

Two dashes -- are comments in HDL. So, one adder and some bit twiddling and the address is calculated in 10ns. Not that you need to
know that, but I thought it was interesting.

Scanline interrupt

Since the 9918A only has one interrupt line, the when you use the HINT it triggers the same interrupt line. Therefore on the host side
you have to check for both VINT and HINT when you are using both. This means you probably can't use the 99/4A's console ISR with
the HINT.

The HINT works very much like the 9938, and I did try to do some enhancements like the 9938 where possible.

To set up a HINT you set the scan line you want the interrupt to trigger on in VR19. A value of zero (0) will disable the interrupt. You
also have to enable the HINT, just like the VINT, in VRO:

9918A 0 0 0 0 0 0 M3 EXTVID
9938 0 DG IE2 IEl M5 M4 M3 O
F18A 0 0 0 IE1 O M4 M3 O

IE = interrupt enable. IEO is in VRl and is the VINT enable, as per the 9918A.

The F18A does not care if the zero bits are zero (0) or one (1), they are ignored. So VR0:3 (IE1) has to be set to one (1) *and* VR19
has to have a value other than zero (0) to enable the interrupt. This way, even if poorly written legacy software sets VR0:3 to one (1),
the F18A will still not generate the HINT because VR19 defaults to zero (and the only way to update VR19 is to unlock the F18A.)

The HINT is reported just like the 9938 via status register SR1:

9938 LPF LPS IDO ID1 ID2 ID3 ID4 HF
F18A IDO ID1 ID2 X X X BLK HF

LPF = light pen flag
LPS = light pen switch
BLK =

HF = horizontal interrupt flag
The HF works the same way as the VINT flag of the 9918A VDP. If VR0:3 (IE1) is set to one (1) then when the scan line reaches the
value in VR19 (and VR19 is not zero (0)), the VDP interrupt output is triggered (set low), and SR1:7 (HF) is set to one (1) and stays set
until you read SR1.

horizontal or vertical blanking is active

The F18A GPU also has direct access to the current scan line counter as well as all the VDP registers. The GPU is also very fast.

VDP Registers

The GPU is a modified 9900 so it can access VRAM, the VDP Registers, etc. as 16-bit or 8-bit values. Yes, the VDP Registers are
memory mapped into the GPU's address space (they are also readable by the host system), as well as the current scan line, blanking,
etc:

-- Address building

-- VRAM 14-bit, 16K @ >0000 to >3FFF (0011 1111 1111 1111)
-- GRAM 11-bit, 2K @ >4000 to >47FF (0100 x111 1111 1111)
-- PRAM 7-bit, 128 @ >5000 to >5x7F (0101 xxxx x111 1111)
-- VREG 6-bit, 64 @ >6000 to >6x3F (0110 xxxx xx11 1111)
-- current scanline @ >7000 to >7xx0 (0111 xxxx xxxxX xxx0)
-- blanking @ >7001 to >7xx1l (0111 xxxx XXXxX xxx1)
-- 32-bit counter @ >8000 to >8xx6 (1000 xxxx xxxx x110)
-- 32-bit rng @ >9000 to >9xx6 (1001 xxxx xxxx x110)
-- F18A version @ >A000 to >Axxx (1010 XXXX XXXX XXXX)
-- GPU status data @ >B000 to >Bxxx (1011 XXXX XXXX XXXX)

VRAM = VDP RAM

GRAM = GPU RAM (only accessible by the GPU)

PRAM = Palette RAM, 16-bit access *ONLY*, i.e. you can not use MOVB to PRAM.
VREG = VDP Registers

17

Wait for vsync

NUM192 BYTE 192

WAIT B CB @>7000, @NUM192 * Wait for the blanking period
JL WAIT B

GPU instruction set

These are the *new* instructions, and they use unused (that looks funny) 9900 opcodes:

* CALL 0C80 0000 1100 10Ts SSSS
* RET 0CO00 0000 1100 0000 0000
* PUSH 0DO0 0000 1101 00Ts SSSS
* POP OF00 0000 1111 00Td DDDD

* SLC OEO0O0 0000 1110 00Ts SSSS

You can use these in any assembler by using DATA statements inline with the code. Examples with hard coded addressing (a pain I
realize):

*

CSON EQU >03A0
CSOFF EQU >03C0
CALSYM EQU >0CAO0
RET EQU >0C00
PUSHRO EQU >0D00
POPR1 EQU >0F01

SPI chip select enable

SPI chip select disable

CALL Symbolic 0000 1100 1010 0000
RET 0000 1100 0000 0000

PUSH RO 0000 1101 0000 0000

POP R1 0000 1101 0000 0001

*

*

*

*

LI R15,>47FE Set the stack pointer to the bottom of the GRAM

*

DATA CALSYM
DATA IDXNUM

CALL @GETIDX

DATA CSON * SPI !CE (CKON opcode)
DATA CSOFF * SPI CE (CKOF opcode)
DATA RET

The F18A uses R15 as the stack pointer, so it should be set up before any of the stack functions are used. The stack operations grow
down in memory and the stack is always word operations (16-bit) on even addresses.

Modified instructions:

IDLE = IDLE Forces the GPU state machine to the idle state, restart with a trigger from host
XOP = PIX The new dedicated pixel plotting instruction

CKON = SPI !CE Sets the chip enable line to the SPI Flash ROM low (enables the ROM)

CKOF = SPI CE Sets the chip enable line to the SPI Flash ROM high (disables the ROM)

LDCR = SPI OUT Writes a byte (always a byte operation) to the SPI Flash ROM

STCR = SPI IN Reads a byte (always a byte operation) from the SPI Flash ROM

RTWP = RTWP Modified, does not use R13, only performs R14->PC, R15->status flags

XOP was chosen for PIX because it uses the workspace pointer similar to BLWP, and the GPU does not have a workspace pointer, and
thus XOP would have been unimplemented anyway. Also, it provided useful enough addressing, i.e. general addressing for the source
which allows the XY location bytes to be in a register or VRAM, and workspace register addressing for the destination (pixel command).

Unimplemented instructions:

SBO
TB

BLWP
STWP

18

LWPI
LIMI
RSET
LREX

Since the F18A does not have a workspace pointer, interrupts, or a CRU, instructions related to those components were not
implemented. Any unknown opcode will simply be ignored (NOP if you want to think of it like that), meaning it will not affect the GPU or
cause it to go awry.

Catalog

The pre-loaded routines are probably not as much as you might think. Rather than try to guess what everyone might need, I decided to
keep it to a minimum (and not hold up the update any longer) and just provide some sort of software library later.

The initial firmware had two pre-loaded routines, a block copy and font load. In the v1.4 update I just added a minimal number of
routines, and made room for the user to add their own routines using the same parameter mechanism and vector table.

BLKCPY * Block Copy

FONTLD * Font Load

GETINF * Get catalog version, free memory, vector tables
GETIDX * Get a catalog index entry

BLOBLD * Load a data blob from the catalog

The firmware has a catalog file that I had hoped to fill with more routines, sound data, patterns, etc. but it never happened (too much
work, not enough time). The catalog currently contains the pre-loaded code itself (so the F18A can be software reset if desired), the
default palettes, and about 22 character sets (patterns for tiles 0 to 255).

SPI Flash

You can definitely brick the F18A via GPU software if you write to the wrong part of the SPI Flash. The SPI Flash contains the bit stream
for the FPGA and if you overwrite it then the FPGA will not have anything to load at power-on. Being able to write to the SPI Flash is
key to me being able to write a software-based firmware update, as well as the file-system storage idea.

Having said that, you can safely *read* any part of the SPI Flash. It currently contains the FPGA bit stream and some font patterns.
You also probably would not be able to accidentally write data to the SPI Flash, it takes a very specific sequence of commands and
data.

The GPU-to-SPI interface is low level, so you will need to get the datasheet for the M25P80 SPI Flash chip. All serial flash is "command
based", meaning to read data you have to send the "read data" command, followed by the 24-bit address, and finally read out the data.
It is actually very similar to how the 9918A works, as well as the GROM.

I re-purposed four opcodes to interface with the SPI Flash:

CKON - clock on - Set the SPI chip enable low. The chip enable is active low.
CKOFF - clock off - Set the SPI chip enable high.

LDCR - load communication register - write a byte (always a byte) to the SPI Flash.
STCR - store communication register - read a byte from the SPI flash.

Did you see the "gpu_preload.asm" file I posted? It contains the pre-loaded GPU code that is part of the FPGA bit stream and has low
level SPI functions.

Basically you would follow this sequence:

CKON Enable the SPI Flash
LDCR Write to the SPI Flash
STCR Read from the SPI Flash
CKOFF Disable the SPI Flash

Here is a real example of reading some data from the SPI Flash:

CSON EQU >03A0 * SPI chip select enable
CSOFF EQU >03C0 * SPI chip select disable

* The name, address, length, and info byte
EVEN

19

ENTNAM BYTE 32,32,32,32,32,32,32,32,32,32

ENTADR BYTE >00,>00,>00 * Catalog data 24-bit address
ENTLEN BYTE >00,>00 * Length of data
ENTINF BYTE >00 * Info, 1l-byte
EVEN
B R1,R0 = Fast read command (1 byte) + 24-bit address of catalog entry to read
LI R3, ENTNAM * Start of the catalog entry structure to load
LI R2,16 * Size of the catalog entry structure
DATA CSON * SPI !CE (CKON opcode)
LDCR RIL, 8 * Send Fast-Read Command in MSB of R1
SWPB R1
LDCR R1,8 * Send MSB of 24-bit address
LDCR RO, 8 * Send 2nd byte
SWPB RO
LDCR RO, 8 * Send LSB of 24-bit address
STCR RO, 8 * Consume (read) Fast-Read dummy byte
IDXG10 STCR *R3+,8 * Read l-byte into the structure
DEC R2
JNE IDXG10
DATA CSOFF * SPI CE (CKOF opcode)

There are 16 "sectors" in the SPI Flash, each sector being 64K (>10000) each. The bit stream reserves the first 5 (0 to 4) sectors from
>00000 to >4FFFF. The catalog reserves sector 5 from >50000 to >5FFFF. You can safely write data in any of the remaining 10 (6 to
15) sectors from >60000 to >FFFFF. It was this area that I was planning to use for the "disk" storage, but that idea is still vaporware.

20

