mirror of
https://github.com/davidgiven/fluxengine.git
synced 2025-10-24 11:11:02 -07:00
319 lines
11 KiB
C++
319 lines
11 KiB
C++
#include "lib/core/globals.h"
|
|
#include "lib/core/utils.h"
|
|
#include "lib/decoders/decoders.h"
|
|
#include "lib/encoders/encoders.h"
|
|
#include "arch/c64/c64.h"
|
|
#include "lib/core/crc.h"
|
|
#include "lib/data/sector.h"
|
|
#include "lib/data/image.h"
|
|
#include "fmt/format.h"
|
|
#include "arch/c64/c64.pb.h"
|
|
#include "lib/encoders/encoders.pb.h"
|
|
#include "lib/data/layout.h"
|
|
#include <ctype.h>
|
|
#include "lib/core/bytes.h"
|
|
|
|
static bool lastBit;
|
|
|
|
static int encode_data_gcr(uint8_t data)
|
|
{
|
|
switch (data)
|
|
{
|
|
#define GCR_ENTRY(gcr, data) \
|
|
case data: \
|
|
return gcr;
|
|
#include "data_gcr.h"
|
|
#undef GCR_ENTRY
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static void write_bits(
|
|
std::vector<bool>& bits, unsigned& cursor, const std::vector<bool>& src)
|
|
{
|
|
for (bool bit : src) // Range-based for loop
|
|
{
|
|
if (cursor < bits.size())
|
|
bits[cursor++] = bit;
|
|
}
|
|
}
|
|
|
|
static void write_bits(
|
|
std::vector<bool>& bits, unsigned& cursor, uint64_t data, int width)
|
|
{
|
|
cursor += width;
|
|
for (int i = 0; i < width; i++)
|
|
{
|
|
unsigned pos = cursor - i - 1;
|
|
if (pos < bits.size())
|
|
bits[pos] = data & 1;
|
|
data >>= 1;
|
|
}
|
|
}
|
|
|
|
static std::vector<bool> encode_data(uint8_t input)
|
|
{
|
|
/*
|
|
* Four 8-bit data bytes are converted to four 10-bit GCR bytes at a time by
|
|
* the 1541 DOS. RAM is only an 8-bit storage device though. This hardware
|
|
* limitation prevents a 10-bit GCR byte from being stored in a single
|
|
* memory location. Four 10-bit GCR bytes total 40 bits - a number evenly
|
|
* divisible by our overriding 8-bit constraint. Commodore sub- divides the
|
|
* 40 GCR bits into five 8-bit bytes to solve this dilemma. This explains
|
|
* why four 8-bit data bytes are converted to GCR form at a time. The
|
|
* following step by step example demonstrates how this bit manipulation is
|
|
* performed by the DOS.
|
|
*
|
|
* STEP 1. Four 8-bit Data Bytes
|
|
* $08 $10 $00 $12
|
|
*
|
|
* STEP 2. Hexadecimal to Binary Conversion
|
|
* 1. Binary Equivalents
|
|
* $08 $10 $00 $12
|
|
* 00001000 00010000 00000000 00010010
|
|
*
|
|
* STEP 3. Binary to GCR Conversion
|
|
* 1. Four 8-bit Data Bytes
|
|
* 00001000 00010000 00000000 00010010
|
|
* 2. High and Low Nybbles
|
|
* 0000 1000 0001 0000 0000 0000 0001 0010
|
|
* 3. High and Low Nybble GCR Equivalents
|
|
* 01010 01001 01011 01010 01010 01010 01011 10010
|
|
* 4. Four 10-bit GCR Bytes
|
|
* 0101001001 0101101010 0101001010 0101110010
|
|
*
|
|
* STEP 4. 10-bit GCR to 8-bit GCR Conversion
|
|
* 1. Concatenate Four 10-bit GCR Bytes
|
|
* 0101001001010110101001010010100101110010
|
|
* 2. Five 8-bit Subdivisions
|
|
* 01010010 01010110 10100101 00101001 01110010
|
|
*
|
|
* STEP 5. Binary to Hexadecimal Conversion
|
|
* 1. Hexadecimal Equivalents
|
|
* 01010010 01010110 10100101 00101001 01110010
|
|
* $52 $56 $A5 $29 $72
|
|
*
|
|
* STEP 6. Four 8-bit Data Bytes are Recorded as Five 8-bit GCR Bytes
|
|
* $08 $10 $00 $12
|
|
*
|
|
* are recorded as
|
|
* $52 $56 $A5 $29 $72
|
|
*/
|
|
|
|
std::vector<bool> output(10, false);
|
|
uint8_t hi = 0;
|
|
uint8_t lo = 0;
|
|
uint8_t lo_GCR = 0;
|
|
uint8_t hi_GCR = 0;
|
|
|
|
// Convert the byte in high and low nibble
|
|
lo = input >> 4; // get the lo nibble shift the bits 4 to the right
|
|
hi = input & 15; // get the hi nibble bij masking the lo bits (00001111)
|
|
|
|
lo_GCR = encode_data_gcr(lo); // example value: 0000 GCR = 01010
|
|
hi_GCR = encode_data_gcr(hi); // example value: 1000 GCR = 01001
|
|
// output = [0,1,2,3,4,5,6,7,8,9]
|
|
// value = [0,1,0,1,0,0,1,0,0,1]
|
|
// 01010 01001
|
|
|
|
int b = 4;
|
|
for (int i = 0; i < 10; i++)
|
|
{
|
|
if (i < 5) // 01234
|
|
{ // i = 0 op
|
|
output[4 - i] = (lo_GCR & 1); // 01010
|
|
|
|
// 01010 -> & 00001 -> 00000 output[4] = 0
|
|
// 00101 -> & 00001 -> 00001 output[3] = 1
|
|
// 00010 -> & 00001 -> 00000 output[2] = 0
|
|
// 00001 -> & 00001 -> 00001 output[1] = 1
|
|
// 00000 -> & 00001 -> 00000 output[0] = 0
|
|
lo_GCR >>= 1;
|
|
}
|
|
else
|
|
{
|
|
output[i + b] = (hi_GCR & 1); // 01001
|
|
// 01001 -> & 00001 -> 00001 output[9] = 1
|
|
// 00100 -> & 00001 -> 00000 output[8] = 0
|
|
// 00010 -> & 00001 -> 00000 output[7] = 0
|
|
// 00001 -> & 00001 -> 00001 output[6] = 1
|
|
// 00000 -> & 00001 -> 00000 output[5] = 0
|
|
hi_GCR >>= 1;
|
|
b = b - 2;
|
|
}
|
|
}
|
|
return output;
|
|
}
|
|
|
|
class Commodore64Encoder : public Encoder
|
|
{
|
|
public:
|
|
Commodore64Encoder(const EncoderProto& config):
|
|
Encoder(config),
|
|
_config(config.c64())
|
|
{
|
|
}
|
|
|
|
public:
|
|
std::unique_ptr<Fluxmap> encode(std::shared_ptr<const TrackInfo>& trackInfo,
|
|
const std::vector<std::shared_ptr<const Sector>>& sectors,
|
|
const Image& image) override
|
|
{
|
|
/* The format ID Character # 1 and # 2 are in the .d64 image only
|
|
* present in track 18 sector zero which contains the BAM info in byte
|
|
* 162 and 163. it is written in every header of every sector and track.
|
|
* headers are not stored in a d64 disk image so we have to get it from
|
|
* track 18 which contains the BAM.
|
|
*/
|
|
|
|
const auto& sectorData = image.get(
|
|
C64_BAM_TRACK, 0, 0); // Read de BAM to get the DISK ID bytes
|
|
if (sectorData)
|
|
{
|
|
ByteReader br(sectorData->data);
|
|
br.seek(162); // goto position of the first Disk ID Byte
|
|
_formatByte1 = br.read_8();
|
|
_formatByte2 = br.read_8();
|
|
}
|
|
else
|
|
_formatByte1 = _formatByte2 = 0;
|
|
|
|
double clockRateUs = clockPeriodForC64Track(trackInfo->logicalTrack);
|
|
int bitsPerRevolution = 200000.0 / clockRateUs;
|
|
|
|
std::vector<bool> bits(bitsPerRevolution);
|
|
unsigned cursor = 0;
|
|
|
|
fillBitmapTo(bits,
|
|
cursor,
|
|
_config.post_index_gap_us() / clockRateUs,
|
|
{true, false});
|
|
lastBit = false;
|
|
|
|
for (const auto& sector : sectors)
|
|
writeSector(bits, cursor, sector);
|
|
|
|
if (cursor >= bits.size())
|
|
error("track data overrun by {} bits", cursor - bits.size());
|
|
fillBitmapTo(bits, cursor, bits.size(), {true, false});
|
|
|
|
std::unique_ptr<Fluxmap> fluxmap(new Fluxmap);
|
|
fluxmap->appendBits(
|
|
bits, calculatePhysicalClockPeriod(clockRateUs * 1e3, 200e6));
|
|
return fluxmap;
|
|
}
|
|
|
|
private:
|
|
void writeSector(std::vector<bool>& bits,
|
|
unsigned& cursor,
|
|
std::shared_ptr<const Sector> sector) const
|
|
{
|
|
/* Source: http://www.unusedino.de/ec64/technical/formats/g64.html
|
|
* 1. Header sync FF FF FF FF FF (40 'on' bits, not GCR)
|
|
* 2. Header info 52 54 B5 29 4B 7A 5E 95 55 55 (10 GCR bytes)
|
|
* 3. Header gap 55 55 55 55 55 55 55 55 55 (9 bytes, never read)
|
|
* 4. Data sync FF FF FF FF FF (40 'on' bits, not GCR)
|
|
* 5. Data block 55...4A (325 GCR bytes)
|
|
* 6. Inter-sector gap 55 55 55 55...55 55 (4 to 12 bytes, never read)
|
|
* 1. Header sync (SYNC for the next sector)
|
|
*/
|
|
if ((sector->status == Sector::OK) or
|
|
(sector->status == Sector::BAD_CHECKSUM))
|
|
{
|
|
// There is data to encode to disk.
|
|
if ((sector->data.size() != C64_SECTOR_LENGTH))
|
|
error("unsupported sector size {} --- you must pick 256",
|
|
sector->data.size());
|
|
|
|
// 1. Write header Sync (not GCR)
|
|
for (int i = 0; i < 6; i++)
|
|
write_bits(
|
|
bits, cursor, C64_HEADER_DATA_SYNC, 1 * 8); /* sync */
|
|
|
|
// 2. Write Header info 10 GCR bytes
|
|
/*
|
|
* The 10 byte header info (#2) is GCR encoded and must be decoded
|
|
* to it's normal 8 bytes to be understood. Once decoded, its
|
|
* breakdown is as follows:
|
|
*
|
|
* Byte $00 - header block ID ($08)
|
|
* 01 - header block checksum 16 (EOR of $02-$05)
|
|
* 02 - Sector
|
|
* 03 - Track
|
|
* 04 - Format ID byte #2
|
|
* 05 - Format ID byte #1
|
|
* 06-07 - $0F ("off" bytes)
|
|
*/
|
|
uint8_t encodedTrack =
|
|
((sector->logicalTrack) +
|
|
1); // C64 track numbering starts with 1. Fluxengine with 0.
|
|
uint8_t encodedSector = sector->logicalSector;
|
|
// uint8_t formatByte1 = C64_FORMAT_ID_BYTE1;
|
|
// uint8_t formatByte2 = C64_FORMAT_ID_BYTE2;
|
|
uint8_t headerChecksum =
|
|
(encodedTrack ^ encodedSector ^ _formatByte1 ^ _formatByte2);
|
|
write_bits(bits, cursor, encode_data(C64_HEADER_BLOCK_ID));
|
|
write_bits(bits, cursor, encode_data(headerChecksum));
|
|
write_bits(bits, cursor, encode_data(encodedSector));
|
|
write_bits(bits, cursor, encode_data(encodedTrack));
|
|
write_bits(bits, cursor, encode_data(_formatByte2));
|
|
write_bits(bits, cursor, encode_data(_formatByte1));
|
|
write_bits(bits, cursor, encode_data(C64_PADDING));
|
|
write_bits(bits, cursor, encode_data(C64_PADDING));
|
|
|
|
// 3. Write header GAP not GCR
|
|
for (int i = 0; i < 9; i++)
|
|
write_bits(
|
|
bits, cursor, C64_HEADER_GAP, 1 * 8); /* header gap */
|
|
|
|
// 4. Write Data sync not GCR
|
|
for (int i = 0; i < 6; i++)
|
|
write_bits(
|
|
bits, cursor, C64_HEADER_DATA_SYNC, 1 * 8); /* sync */
|
|
|
|
// 5. Write data block 325 GCR bytes
|
|
/*
|
|
* The 325 byte data block (#5) is GCR encoded and must be decoded
|
|
* to its normal 260 bytes to be understood. The data block is made
|
|
* up of the following:
|
|
*
|
|
* Byte $00 - data block ID ($07)
|
|
* 01-100 - 256 bytes data
|
|
* 101 - data block checksum (EOR of $01-100)
|
|
* 102-103 - $00 ("off" bytes, to make the sector size a
|
|
* multiple of 5)
|
|
*/
|
|
|
|
write_bits(bits, cursor, encode_data(C64_DATA_BLOCK_ID));
|
|
uint8_t dataChecksum = xorBytes(sector->data);
|
|
ByteReader br(sector->data);
|
|
int i = 0;
|
|
for (i = 0; i < C64_SECTOR_LENGTH; i++)
|
|
{
|
|
uint8_t val = br.read_8();
|
|
write_bits(bits, cursor, encode_data(val));
|
|
}
|
|
write_bits(bits, cursor, encode_data(dataChecksum));
|
|
write_bits(bits, cursor, encode_data(C64_PADDING));
|
|
write_bits(bits, cursor, encode_data(C64_PADDING));
|
|
|
|
// 6. Write inter-sector gap 9 - 12 bytes nor gcr
|
|
for (int i = 0; i < 9; i++)
|
|
write_bits(
|
|
bits, cursor, C64_INTER_SECTOR_GAP, 1 * 8); /* sync */
|
|
}
|
|
}
|
|
|
|
private:
|
|
const Commodore64EncoderProto& _config;
|
|
uint8_t _formatByte1;
|
|
uint8_t _formatByte2;
|
|
};
|
|
|
|
std::unique_ptr<Encoder> createCommodore64Encoder(const EncoderProto& config)
|
|
{
|
|
return std::unique_ptr<Encoder>(new Commodore64Encoder(config));
|
|
}
|
|
|
|
// vim: sw=4 ts=4 et
|