Files
fluxengine/lib/algorithms/readerwriter.cc
David Given 2bda78fb40 Distinguish between filesystem track ordering and image track ordering
(although currently only the filesystem ordering is used).
2024-11-29 22:07:58 +01:00

771 lines
24 KiB
C++

#include "lib/core/globals.h"
#include "lib/config/config.h"
#include "lib/config/flags.h"
#include "lib/data/fluxmap.h"
#include "lib/algorithms/readerwriter.h"
#include "protocol.h"
#include "lib/usb/usb.h"
#include "lib/encoders/encoders.h"
#include "lib/decoders/decoders.h"
#include "lib/fluxsource/fluxsource.h"
#include "lib/fluxsink/fluxsink.h"
#include "lib/imagereader/imagereader.h"
#include "lib/imagewriter/imagewriter.h"
#include "lib/data/sector.h"
#include "lib/data/image.h"
#include "lib/core/logger.h"
#include "lib/data/layout.h"
#include "lib/core/utils.h"
#include "lib/config/config.pb.h"
#include "lib/config/proto.h"
#include <optional>
enum ReadResult
{
GOOD_READ,
BAD_AND_CAN_RETRY,
BAD_AND_CAN_NOT_RETRY
};
enum BadSectorsState
{
HAS_NO_BAD_SECTORS,
HAS_BAD_SECTORS
};
/* Log renderers. */
/* Start measuring the rotational speed */
void renderLogMessage(
LogRenderer& r, std::shared_ptr<const BeginSpeedOperationLogMessage> m)
{
r.newline().add("Measuring rotational speed...").newline();
}
/* Finish measuring the rotational speed */
void renderLogMessage(
LogRenderer& r, std::shared_ptr<const EndSpeedOperationLogMessage> m)
{
r.newline()
.add(fmt::format("Rotational period is {:.1f}ms ({:.1f}rpm)",
m->rotationalPeriod / 1e6,
60e9 / m->rotationalPeriod))
.newline();
}
/* Indicates that we're starting a write operation. */
void renderLogMessage(
LogRenderer& r, std::shared_ptr<const BeginWriteOperationLogMessage> m)
{
r.header(fmt::format("W{:2}.{}: ", m->track, m->head));
}
/* Indicates that we're finishing a write operation. */
void renderLogMessage(
LogRenderer& r, std::shared_ptr<const EndWriteOperationLogMessage> m)
{
}
/* Indicates that we're starting a read operation. */
void renderLogMessage(
LogRenderer& r, std::shared_ptr<const BeginReadOperationLogMessage> m)
{
r.header(fmt::format("R{:2}.{}: ", m->track, m->head));
}
/* Indicates that we're finishing a read operation. */
void renderLogMessage(
LogRenderer& r, std::shared_ptr<const EndReadOperationLogMessage> m)
{
}
/* We've just read a track (we might reread it if there are errors)
*/
void renderLogMessage(
LogRenderer& r, std::shared_ptr<const TrackReadLogMessage> m)
{
const auto& track = *m->track;
std::set<std::shared_ptr<const Sector>> rawSectors;
std::set<std::shared_ptr<const Record>> rawRecords;
for (const auto& trackDataFlux : track.trackDatas)
{
rawSectors.insert(
trackDataFlux->sectors.begin(), trackDataFlux->sectors.end());
rawRecords.insert(
trackDataFlux->records.begin(), trackDataFlux->records.end());
}
nanoseconds_t clock = 0;
for (const auto& sector : rawSectors)
clock += sector->clock;
if (!rawSectors.empty())
clock /= rawSectors.size();
r.comma().add(fmt::format("{} raw records, {} raw sectors",
rawRecords.size(),
rawSectors.size()));
if (clock != 0)
{
r.comma().add(fmt::format(
"{:.2f}us clock ({:.0f}kHz)", clock / 1000.0, 1000000.0 / clock));
}
r.newline().add("sectors:");
std::vector<std::shared_ptr<const Sector>> sectors(
track.sectors.begin(), track.sectors.end());
std::sort(sectors.begin(), sectors.end(), sectorPointerSortPredicate);
for (const auto& sector : sectors)
r.add(fmt::format("{}.{}.{}{}",
sector->logicalTrack,
sector->logicalSide,
sector->logicalSector,
Sector::statusToChar(sector->status)));
int size = 0;
std::set<std::pair<int, int>> track_ids;
for (const auto& sector : m->track->sectors)
{
track_ids.insert(
std::make_pair(sector->logicalTrack, sector->logicalSide));
size += sector->data.size();
}
r.newline().add(fmt::format("{} bytes decoded\n", size));
}
/* We've just read a disk.
*/
void renderLogMessage(
LogRenderer& r, std::shared_ptr<const DiskReadLogMessage> m)
{
}
/* Large-scale operation start. */
void renderLogMessage(
LogRenderer& r, std::shared_ptr<const BeginOperationLogMessage> m)
{
}
/* Large-scale operation end. */
void renderLogMessage(
LogRenderer& r, std::shared_ptr<const EndOperationLogMessage> m)
{
}
/* Large-scale operation progress. */
void renderLogMessage(
LogRenderer& r, std::shared_ptr<const OperationProgressLogMessage> m)
{
}
/* In order to allow rereads in file-based flux sources, we need to persist the
* FluxSourceIterator (as that's where the state for which read to return is
* held). This class handles that. */
class FluxSourceIteratorHolder
{
public:
FluxSourceIteratorHolder(FluxSource& fluxSource): _fluxSource(fluxSource) {}
FluxSourceIterator& getIterator(unsigned physicalCylinder, unsigned head)
{
auto& it = _cache[std::make_pair(physicalCylinder, head)];
if (!it)
it = _fluxSource.readFlux(physicalCylinder, head);
return *it;
}
private:
FluxSource& _fluxSource;
std::map<std::pair<unsigned, unsigned>, std::unique_ptr<FluxSourceIterator>>
_cache;
};
void measureDiskRotation()
{
log(BeginSpeedOperationLogMessage());
nanoseconds_t oneRevolution =
globalConfig()->drive().rotational_period_ms() * 1e6;
if (oneRevolution == 0)
{
usbSetDrive(globalConfig()->drive().drive(),
globalConfig()->drive().high_density(),
globalConfig()->drive().index_mode());
log(BeginOperationLogMessage{"Measuring drive rotational speed"});
int retries = 5;
do
{
oneRevolution = usbGetRotationalPeriod(
globalConfig()->drive().hard_sector_count());
retries--;
} while ((oneRevolution == 0) && (retries > 0));
globalConfig().setTransient(
"drive.rotational_period_ms", std::to_string(oneRevolution / 1e6));
log(EndOperationLogMessage{});
}
if (!globalConfig()->drive().hard_sector_threshold_ns())
{
int count = globalConfig()->drive().hard_sector_count();
globalConfig().setTransient("drive.hard_sector_threshold_ns",
count ? std::to_string(
oneRevolution * 3 /
(4 * globalConfig()->drive().hard_sector_count()))
: "0");
}
if (oneRevolution == 0)
error("Failed\nIs a disk in the drive?");
log(EndSpeedOperationLogMessage{oneRevolution});
}
/* Given a set of sectors, deduplicates them sensibly (e.g. if there is a good
* and bad version of the same sector, the bad version is dropped). */
static std::set<std::shared_ptr<const Sector>> collectSectors(
std::set<std::shared_ptr<const Sector>>& track_sectors,
bool collapse_conflicts = true)
{
typedef std::tuple<unsigned, unsigned, unsigned> key_t;
std::multimap<key_t, std::shared_ptr<const Sector>> sectors;
for (const auto& sector : track_sectors)
{
key_t sectorid = {
sector->logicalTrack, sector->logicalSide, sector->logicalSector};
sectors.insert({sectorid, sector});
}
std::set<std::shared_ptr<const Sector>> sector_set;
auto it = sectors.begin();
while (it != sectors.end())
{
auto ub = sectors.upper_bound(it->first);
auto new_sector = std::accumulate(it,
ub,
it->second,
[&](auto left, auto& rightit) -> std::shared_ptr<const Sector>
{
auto& right = rightit.second;
if ((left->status == Sector::OK) &&
(right->status == Sector::OK) &&
(left->data != right->data))
{
if (!collapse_conflicts)
{
auto s = std::make_shared<Sector>(*right);
s->status = Sector::CONFLICT;
sector_set.insert(s);
}
auto s = std::make_shared<Sector>(*left);
s->status = Sector::CONFLICT;
return s;
}
if (left->status == Sector::CONFLICT)
return left;
if (right->status == Sector::CONFLICT)
return right;
if (left->status == Sector::OK)
return left;
if (right->status == Sector::OK)
return right;
return left;
});
sector_set.insert(new_sector);
it = ub;
}
return sector_set;
}
BadSectorsState combineRecordAndSectors(TrackFlux& trackFlux,
Decoder& decoder,
std::shared_ptr<const TrackInfo>& trackLayout)
{
std::set<std::shared_ptr<const Sector>> track_sectors;
/* Add the sectors which were there. */
for (auto& trackdataflux : trackFlux.trackDatas)
track_sectors.insert(
trackdataflux->sectors.begin(), trackdataflux->sectors.end());
/* Add the sectors which should be there. */
for (unsigned sectorId : trackLayout->naturalSectorOrder)
{
auto sector = std::make_shared<Sector>(LogicalLocation{
trackLayout->logicalTrack, trackLayout->logicalSide, sectorId});
sector->status = Sector::MISSING;
track_sectors.insert(sector);
}
/* Deduplicate. */
trackFlux.sectors = collectSectors(track_sectors);
if (trackFlux.sectors.empty())
return HAS_BAD_SECTORS;
for (const auto& sector : trackFlux.sectors)
if (sector->status != Sector::OK)
return HAS_BAD_SECTORS;
return HAS_NO_BAD_SECTORS;
}
static void adjustTrackOnError(FluxSource& fluxSource, int baseTrack)
{
switch (globalConfig()->drive().error_behaviour())
{
case DriveProto::NOTHING:
break;
case DriveProto::RECALIBRATE:
fluxSource.recalibrate();
break;
case DriveProto::JIGGLE:
if (baseTrack > 0)
fluxSource.seek(baseTrack - 1);
else
fluxSource.seek(baseTrack + 1);
break;
}
}
ReadResult readGroup(FluxSourceIteratorHolder& fluxSourceIteratorHolder,
std::shared_ptr<const TrackInfo>& trackInfo,
TrackFlux& trackFlux,
Decoder& decoder)
{
ReadResult result = BAD_AND_CAN_NOT_RETRY;
for (unsigned offset = 0; offset < trackInfo->groupSize;
offset += Layout::getHeadWidth())
{
log(BeginReadOperationLogMessage{
trackInfo->physicalTrack + offset, trackInfo->physicalSide});
auto& fluxSourceIterator = fluxSourceIteratorHolder.getIterator(
trackInfo->physicalTrack + offset, trackInfo->physicalSide);
if (!fluxSourceIterator.hasNext())
continue;
std::shared_ptr<const Fluxmap> fluxmap = fluxSourceIterator.next();
// ->rescale(
// 1.0 / globalConfig()->flux_source().rescale());
log(EndReadOperationLogMessage());
log("{0} ms in {1} bytes",
(int)(fluxmap->duration() / 1e6),
fluxmap->bytes());
auto trackdataflux = decoder.decodeToSectors(fluxmap, trackInfo);
trackFlux.trackDatas.push_back(trackdataflux);
if (combineRecordAndSectors(trackFlux, decoder, trackInfo) ==
HAS_NO_BAD_SECTORS)
{
result = GOOD_READ;
if (globalConfig()->decoder().skip_unnecessary_tracks())
return result;
}
else if (fluxSourceIterator.hasNext())
result = BAD_AND_CAN_RETRY;
}
return result;
}
void writeTracks(FluxSink& fluxSink,
std::function<std::unique_ptr<const Fluxmap>(
std::shared_ptr<const TrackInfo>& trackInfo)> producer,
std::function<bool(std::shared_ptr<const TrackInfo>& trackInfo)> verifier,
std::vector<std::shared_ptr<const TrackInfo>>& trackInfos)
{
log(BeginOperationLogMessage{"Encoding and writing to disk"});
if (fluxSink.isHardware())
measureDiskRotation();
int index = 0;
for (auto& trackInfo : trackInfos)
{
log(OperationProgressLogMessage{
index * 100 / (unsigned)trackInfos.size()});
index++;
testForEmergencyStop();
int retriesRemaining = globalConfig()->decoder().retries();
for (;;)
{
for (int offset = 0; offset < trackInfo->groupSize;
offset += Layout::getHeadWidth())
{
unsigned physicalTrack = trackInfo->physicalTrack + offset;
log(BeginWriteOperationLogMessage{
physicalTrack, trackInfo->physicalSide});
if (offset == globalConfig()->drive().group_offset())
{
auto fluxmap = producer(trackInfo);
if (!fluxmap)
goto erase;
fluxSink.writeFlux(
physicalTrack, trackInfo->physicalSide, *fluxmap);
log("writing {0} ms in {1} bytes",
int(fluxmap->duration() / 1e6),
fluxmap->bytes());
}
else
{
erase:
/* Erase this track rather than writing. */
Fluxmap blank;
fluxSink.writeFlux(
physicalTrack, trackInfo->physicalSide, blank);
log("erased");
}
log(EndWriteOperationLogMessage());
}
if (verifier(trackInfo))
break;
if (retriesRemaining == 0)
error("fatal error on write");
log("retrying; {} retries remaining", retriesRemaining);
retriesRemaining--;
}
}
log(EndOperationLogMessage{"Write complete"});
}
void writeTracks(FluxSink& fluxSink,
Encoder& encoder,
const Image& image,
std::vector<std::shared_ptr<const TrackInfo>>& trackInfos)
{
writeTracks(
fluxSink,
[&](std::shared_ptr<const TrackInfo>& trackInfo)
{
auto sectors = encoder.collectSectors(trackInfo, image);
return encoder.encode(trackInfo, sectors, image);
},
[](const auto&)
{
return true;
},
trackInfos);
}
void writeTracksAndVerify(FluxSink& fluxSink,
Encoder& encoder,
FluxSource& fluxSource,
Decoder& decoder,
const Image& image,
std::vector<std::shared_ptr<const TrackInfo>>& trackInfos)
{
writeTracks(
fluxSink,
[&](std::shared_ptr<const TrackInfo>& trackInfo)
{
auto sectors = encoder.collectSectors(trackInfo, image);
return encoder.encode(trackInfo, sectors, image);
},
[&](std::shared_ptr<const TrackInfo>& trackInfo)
{
auto trackFlux = std::make_shared<TrackFlux>();
trackFlux->trackInfo = trackInfo;
FluxSourceIteratorHolder fluxSourceIteratorHolder(fluxSource);
auto result = readGroup(
fluxSourceIteratorHolder, trackInfo, *trackFlux, decoder);
log(TrackReadLogMessage{trackFlux});
if (result != GOOD_READ)
{
adjustTrackOnError(fluxSource, trackInfo->physicalTrack);
log("bad read");
return false;
}
Image wanted;
for (const auto& sector : encoder.collectSectors(trackInfo, image))
wanted
.put(sector->logicalTrack,
sector->logicalSide,
sector->logicalSector)
->data = sector->data;
for (const auto& sector : trackFlux->sectors)
{
const auto s = wanted.get(sector->logicalTrack,
sector->logicalSide,
sector->logicalSector);
if (!s)
{
log("spurious sector on verify");
return false;
}
if (s->data != sector->data.slice(0, s->data.size()))
{
log("data mismatch on verify");
return false;
}
wanted.erase(sector->logicalTrack,
sector->logicalSide,
sector->logicalSector);
}
if (!wanted.empty())
{
log("missing sector on verify");
return false;
}
return true;
},
trackInfos);
}
void writeDiskCommand(const Image& image,
Encoder& encoder,
FluxSink& fluxSink,
Decoder* decoder,
FluxSource* fluxSource,
std::vector<std::shared_ptr<const TrackInfo>>& locations)
{
if (fluxSource && decoder)
writeTracksAndVerify(
fluxSink, encoder, *fluxSource, *decoder, image, locations);
else
writeTracks(fluxSink, encoder, image, locations);
}
void writeDiskCommand(const Image& image,
Encoder& encoder,
FluxSink& fluxSink,
Decoder* decoder,
FluxSource* fluxSource)
{
auto locations = Layout::computeLocations();
writeDiskCommand(image, encoder, fluxSink, decoder, fluxSource, locations);
}
void writeRawDiskCommand(FluxSource& fluxSource, FluxSink& fluxSink)
{
auto locations = Layout::computeLocations();
writeTracks(
fluxSink,
[&](std::shared_ptr<const TrackInfo>& trackInfo)
{
return fluxSource
.readFlux(trackInfo->physicalTrack, trackInfo->physicalSide)
->next();
},
[](const auto&)
{
return true;
},
locations);
}
std::shared_ptr<TrackFlux> readAndDecodeTrack(FluxSource& fluxSource,
Decoder& decoder,
std::shared_ptr<const TrackInfo>& trackInfo)
{
auto trackFlux = std::make_shared<TrackFlux>();
trackFlux->trackInfo = trackInfo;
if (fluxSource.isHardware())
measureDiskRotation();
FluxSourceIteratorHolder fluxSourceIteratorHolder(fluxSource);
int retriesRemaining = globalConfig()->decoder().retries();
for (;;)
{
auto result =
readGroup(fluxSourceIteratorHolder, trackInfo, *trackFlux, decoder);
if (result == GOOD_READ)
break;
if (result == BAD_AND_CAN_NOT_RETRY)
{
log("no more data; giving up");
break;
}
if (retriesRemaining == 0)
{
log("giving up");
break;
}
if (fluxSource.isHardware())
{
adjustTrackOnError(fluxSource, trackInfo->physicalTrack);
log("retrying; {} retries remaining", retriesRemaining);
retriesRemaining--;
}
}
return trackFlux;
}
std::shared_ptr<const DiskFlux> readDiskCommand(
FluxSource& fluxSource, Decoder& decoder)
{
std::unique_ptr<FluxSink> outputFluxSink;
if (globalConfig()->decoder().has_copy_flux_to())
outputFluxSink =
FluxSink::create(globalConfig()->decoder().copy_flux_to());
auto diskflux = std::make_shared<DiskFlux>();
log(BeginOperationLogMessage{"Reading and decoding disk"});
auto locations = Layout::computeLocations();
unsigned index = 0;
for (auto& trackInfo : locations)
{
log(OperationProgressLogMessage{
index * 100 / (unsigned)locations.size()});
index++;
testForEmergencyStop();
auto trackFlux = readAndDecodeTrack(fluxSource, decoder, trackInfo);
diskflux->tracks.push_back(trackFlux);
if (outputFluxSink)
{
for (const auto& data : trackFlux->trackDatas)
outputFluxSink->writeFlux(trackInfo->physicalTrack,
trackInfo->physicalSide,
*data->fluxmap);
}
if (globalConfig()->decoder().dump_records())
{
std::vector<std::shared_ptr<const Record>> sorted_records;
for (const auto& data : trackFlux->trackDatas)
sorted_records.insert(sorted_records.end(),
data->records.begin(),
data->records.end());
std::sort(sorted_records.begin(),
sorted_records.end(),
[](const auto& o1, const auto& o2)
{
return o1->startTime < o2->startTime;
});
std::cout << "\nRaw (undecoded) records follow:\n\n";
for (const auto& record : sorted_records)
{
std::cout << fmt::format("I+{:.2f}us with {:.2f}us clock\n",
record->startTime / 1000.0,
record->clock / 1000.0);
hexdump(std::cout, record->rawData);
std::cout << std::endl;
}
}
if (globalConfig()->decoder().dump_sectors())
{
auto collected_sectors = collectSectors(trackFlux->sectors, false);
std::vector<std::shared_ptr<const Sector>> sorted_sectors(
collected_sectors.begin(), collected_sectors.end());
std::sort(sorted_sectors.begin(),
sorted_sectors.end(),
[](const auto& o1, const auto& o2)
{
return *o1 < *o2;
});
std::cout << "\nDecoded sectors follow:\n\n";
for (const auto& sector : sorted_sectors)
{
std::cout << fmt::format(
"{}.{:02}.{:02}: I+{:.2f}us with {:.2f}us clock: "
"status {}\n",
sector->logicalTrack,
sector->logicalSide,
sector->logicalSector,
sector->headerStartTime / 1000.0,
sector->clock / 1000.0,
Sector::statusToString(sector->status));
hexdump(std::cout, sector->data);
std::cout << std::endl;
}
}
/* track can't be modified below this point. */
log(TrackReadLogMessage{trackFlux});
}
std::set<std::shared_ptr<const Sector>> all_sectors;
for (auto& track : diskflux->tracks)
for (auto& sector : track->sectors)
all_sectors.insert(sector);
all_sectors = collectSectors(all_sectors);
diskflux->image = std::make_shared<Image>(all_sectors);
/* diskflux can't be modified below this point. */
log(DiskReadLogMessage{diskflux});
log(EndOperationLogMessage{"Read complete"});
return diskflux;
}
void readDiskCommand(
FluxSource& fluxsource, Decoder& decoder, ImageWriter& writer)
{
auto diskflux = readDiskCommand(fluxsource, decoder);
writer.printMap(*diskflux->image);
if (globalConfig()->decoder().has_write_csv_to())
writer.writeCsv(
*diskflux->image, globalConfig()->decoder().write_csv_to());
writer.writeMappedImage(*diskflux->image);
}
void rawReadDiskCommand(FluxSource& fluxsource, FluxSink& fluxsink)
{
log(BeginOperationLogMessage{"Performing raw read of disk"});
if (fluxsource.isHardware() || fluxsink.isHardware())
measureDiskRotation();
auto locations = Layout::computeLocations();
unsigned index = 0;
for (auto& trackInfo : locations)
{
log(OperationProgressLogMessage{index * 100 / (int)locations.size()});
index++;
testForEmergencyStop();
auto fluxSourceIterator = fluxsource.readFlux(
trackInfo->physicalTrack, trackInfo->physicalSide);
log(BeginReadOperationLogMessage{
trackInfo->physicalTrack, trackInfo->physicalSide});
auto fluxmap = fluxSourceIterator->next();
log(EndReadOperationLogMessage());
log("{0} ms in {1} bytes",
(int)(fluxmap->duration() / 1e6),
fluxmap->bytes());
fluxsink.writeFlux(
trackInfo->physicalTrack, trackInfo->physicalSide, *fluxmap);
}
log(EndOperationLogMessage{"Raw read complete"});
}