Files
fluxengine/arch/northstar/decoder.cc
Howard M. Harte 5b1a3173f8 Add support for North Star hard-sectored floppies.
North Star Floppy disks use 10-sector hard sectored disks with either FM
or MFM encoding.  They may be single- or double-sided.  Each of the 10
sectors contains 256 (FM) or 512 (MFM) bytes of data.  The disk has 35
cylinders, with tracks 0-34 on side 0, and tracks 35-69 on side 1.
Tracks on side 1 are numbered "backwards" in that track 35 corresponds
to cylinder 34, side 1, and track 69 corresponds to cylinder 0, side 1.

The North Star sector format does not include any head positioning
information.  As such, reads from North Star floppies need to be
synchronized with the index pulse, in order to properly identify the
sector being read.  While there is a command line option:
--sync-with-index, that does this, the North Star reader forces this
behavior by default.

MFM sectors have 32 bytes of 00's followed by two sync characters,
specified in the North Star MDS manual as 0xFBFB.

This is true for most disks; however, I found a few disks, including an
original North Star DOS/BASIC v2.2.1 DQ disk, that uses 0xFBnn, where
nn is an incrementing pattern.

While searching for the start of a sector header, seekToPattern()
ignores the sector pulses.  If a sector header cannot be decoded for any
reason, seekToPattern() will advance past one or more sector pulses.
For this reason, the _hardSectorId is calulated after the sector header
is found.

Due to the nature of the track ordering on side 1, an .nsi image reader
and writer are provided for double-sided disks.  The .nsi image format
supports both single- and double-sided disks; however, single-sided .nsi
images are equivalent to .img images.
2021-05-16 15:41:55 -07:00

176 lines
4.9 KiB
C++

/* Decoder for North Star 10-sector hard-sectored disks.
*
* Supports both single- and double-density. For the sector format and
* checksum algorithm, see pp. 33 of the North Star Double Density Controller
* manual:
*
* http://bitsavers.org/pdf/northstar/boards/Northstar_MDS-A-D_1978.pdf
*
* North Star disks do not contain any track/head/sector information
* encoded in the sector record. For this reason, we have to be absolutely
* sure that the hardSectorId is correct.
*/
#include "globals.h"
#include "fluxmap.h"
#include "decoders/fluxmapreader.h"
#include "decoders/decoders.h"
#include "sector.h"
#include "northstar.h"
#include "bytes.h"
#include "fmt/format.h"
/*
* MFM sectors have 32 bytes of 00's followed by two sync characters,
* specified in the North Star MDS manual as 0xFBFB.
*
* This is true for most disks; however, I found a few disks, including an
* original North Star DOS/BASIC v2.2.1 DQ disk) that uses 0xFBnn, where
* nn is an incrementing pattern.
*
* 00 00 00 F B
* 0000 0000 0000 0000 0000 0000 0101 0101 0100 0101
* A A A A A A 5 5 4 5
*/
static const FluxPattern MFM_PATTERN(64, 0xAAAAAAAAAAAA5545LL);
/* FM sectors have 16 bytes of 00's followed by 0xFB.
* 00 FB
* 0000 0000 1111 1111 1110 1111
* A A F F E F
*/
static const FluxPattern FM_PATTERN(64, 0xAAAAAAAAAAAAFFEFLL);
const FluxMatchers ANY_SECTOR_PATTERN(
{
&MFM_PATTERN,
&FM_PATTERN,
}
);
/* Search for FM or MFM sector record */
AbstractDecoder::RecordType NorthstarDecoder::advanceToNextRecord()
{
nanoseconds_t now = _fmr->tell().ns();
/* For all but the first sector, seek to the next sector pulse.
* The first sector does not contain the sector pulse in the fluxmap.
*/
if (now != 0) {
_fmr->seekToIndexMark();
now = _fmr->tell().ns();
}
/* Discard a possible partial sector at the end of the track.
* This partial sector could be mistaken for a conflicted sector, if
* whatever data read happens to match the checksum of 0, which is
* rare, but has been observed on some disks.
*/
if (now > (_fmr->getDuration() - 21e6)) {
_fmr->seekToIndexMark();
return(UNKNOWN_RECORD);
}
int msSinceIndex = std::round(now / 1e6);
const FluxMatcher* matcher = nullptr;
/* Note that the seekToPattern ignores the sector pulses, so if
* a sector is not found for some reason, the seek will advance
* past one or more sector pulses. For this reason, calculate
* _hardSectorId after the sector header is found.
*/
_sector->clock = _fmr->seekToPattern(ANY_SECTOR_PATTERN, matcher);
int sectorFoundTimeRaw = std::round((_fmr->tell().ns()) / 1e6);
int sectorFoundTime;
/* Round time to the nearest 20ms */
if ((sectorFoundTimeRaw % 20) < 10) {
sectorFoundTime = (sectorFoundTimeRaw / 20) * 20;
}
else {
sectorFoundTime = ((sectorFoundTimeRaw + 20) / 20) * 20;
}
/* Calculate the sector ID based on time since the index */
_hardSectorId = (sectorFoundTime / 20) % 10;
// std::cout << fmt::format(
// "Sector ID {}: hole at {}ms, sector start at {}ms",
// _hardSectorId, msSinceIndex, sectorFoundTimeRaw) << std::endl;
if (matcher == &MFM_PATTERN) {
_sectorType = SECTOR_TYPE_MFM;
readRawBits(48);
return SECTOR_RECORD;
}
if (matcher == &FM_PATTERN) {
_sectorType = SECTOR_TYPE_FM;
readRawBits(48);
return SECTOR_RECORD;
}
return UNKNOWN_RECORD;
}
/* Checksum is initially 0.
* For each data byte, XOR with the current checksum.
* Rotate checksum left, carrying bit 7 to bit 0.
*/
uint8_t northstarChecksum(const Bytes& bytes) {
ByteReader br(bytes);
uint8_t checksum = 0;
while (!br.eof()) {
checksum ^= br.read_8();
checksum = ((checksum << 1) | ((checksum >> 7)));
}
return checksum;
}
void NorthstarDecoder::decodeSectorRecord()
{
unsigned recordSize, payloadSize, headerSize;
if (_sectorType == SECTOR_TYPE_MFM) {
recordSize = NORTHSTAR_ENCODED_SECTOR_SIZE_DD;
payloadSize = NORTHSTAR_PAYLOAD_SIZE_DD;
headerSize = NORTHSTAR_HEADER_SIZE_DD;
}
else {
recordSize = NORTHSTAR_ENCODED_SECTOR_SIZE_SD;
payloadSize = NORTHSTAR_PAYLOAD_SIZE_SD;
headerSize = NORTHSTAR_HEADER_SIZE_SD;
}
auto rawbits = readRawBits(recordSize * 16);
auto bytes = decodeFmMfm(rawbits).slice(0, recordSize);
ByteReader br(bytes);
uint8_t sync_char;
_sector->logicalSide = _sector->physicalSide;
_sector->logicalSector = _hardSectorId;
_sector->logicalTrack = _sector->physicalTrack;
sync_char = br.read_8(); /* Sync char: 0xFB */
if (_sectorType == SECTOR_TYPE_MFM) {
sync_char = br.read_8();/* MFM second Sync char, usually 0xFB */
}
_sector->data = br.read(payloadSize);
uint8_t wantChecksum = br.read_8();
uint8_t gotChecksum = northstarChecksum(bytes.slice(headerSize, payloadSize));
_sector->status = (wantChecksum == gotChecksum) ? Sector::OK : Sector::BAD_CHECKSUM;
}
std::set<unsigned> NorthstarDecoder::requiredSectors(Track& track) const
{
static std::set<unsigned> sectors = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
return sectors;
}