Files
fluxengine/arch/c64/encoder.cc

337 lines
12 KiB
C++

#include "globals.h"
#include "decoders/decoders.h"
#include "encoders/encoders.h"
#include "c64.h"
#include "crc.h"
#include "sector.h"
#include "readerwriter.h"
#include "image.h"
#include "fmt/format.h"
#include "arch/c64/c64.pb.h"
#include "lib/encoders/encoders.pb.h"
#include <ctype.h>
#include "bytes.h"
static bool lastBit;
static int encode_data_gcr(uint8_t data)
{
switch (data)
{
#define GCR_ENTRY(gcr, data) \
case data: return gcr;
#include "data_gcr.h"
#undef GCR_ENTRY
}
return -1;
}
static void write_bits(std::vector<bool>& bits, unsigned& cursor, const std::vector<bool>& src)
{
for (bool bit : src) //Range-based for loop
{
if (cursor < bits.size())
bits[cursor++] = bit;
}
}
static void write_bits(std::vector<bool>& bits, unsigned& cursor, uint64_t data, int width)
{
cursor += width;
for (int i=0; i<width; i++)
{
unsigned pos = cursor - i - 1;
if (pos < bits.size())
bits[pos] = data & 1;
data >>= 1;
}
}
void bindump(std::ostream& stream, std::vector<bool>& buffer)
{
size_t pos = 0;
while ((pos < buffer.size()) and (pos <520))
{
stream << fmt::format("{:5d} : ", pos);
for (int i=0; i<40; i++)
{
if ((pos+i) < buffer.size())
stream << fmt::format("{:01b}", (buffer[pos+i]));
else
stream << "-- ";
if ((((pos + i + 1) % 8) == 0) and i != 0)
stream << " ";
}
stream << std::endl;
pos += 40;
}
}
static std::vector<bool> encode_data(uint8_t input)
{
/*
* Four 8-bit data bytes are converted to four 10-bit GCR bytes at a time by
* the 1541 DOS. RAM is only an 8-bit storage device though. This hardware
* limitation prevents a 10-bit GCR byte from being stored in a single
* memory location. Four 10-bit GCR bytes total 40 bits - a number evenly
* divisible by our overriding 8-bit constraint. Commodore sub- divides the
* 40 GCR bits into five 8-bit bytes to solve this dilemma. This explains
* why four 8-bit data bytes are converted to GCR form at a time. The
* following step by step example demonstrates how this bit manipulation is
* performed by the DOS.
*
* STEP 1. Four 8-bit Data Bytes
* $08 $10 $00 $12
*
* STEP 2. Hexadecimal to Binary Conversion
* 1. Binary Equivalents
* $08 $10 $00 $12
* 00001000 00010000 00000000 00010010
*
* STEP 3. Binary to GCR Conversion
* 1. Four 8-bit Data Bytes
* 00001000 00010000 00000000 00010010
* 2. High and Low Nybbles
* 0000 1000 0001 0000 0000 0000 0001 0010
* 3. High and Low Nybble GCR Equivalents
* 01010 01001 01011 01010 01010 01010 01011 10010
* 4. Four 10-bit GCR Bytes
* 0101001001 0101101010 0101001010 0101110010
*
* STEP 4. 10-bit GCR to 8-bit GCR Conversion
* 1. Concatenate Four 10-bit GCR Bytes
* 0101001001010110101001010010100101110010
* 2. Five 8-bit Subdivisions
* 01010010 01010110 10100101 00101001 01110010
*
* STEP 5. Binary to Hexadecimal Conversion
* 1. Hexadecimal Equivalents
* 01010010 01010110 10100101 00101001 01110010
* $52 $56 $A5 $29 $72
*
* STEP 6. Four 8-bit Data Bytes are Recorded as Five 8-bit GCR Bytes
* $08 $10 $00 $12
*
* are recorded as
* $52 $56 $A5 $29 $72
*/
std::vector<bool> output(10, false);
uint8_t hi = 0;
uint8_t lo = 0;
uint8_t lo_GCR = 0;
uint8_t hi_GCR = 0;
//Convert the byte in high and low nibble
lo = input >> 4; //get the lo nibble shift the bits 4 to the right
hi = input & 15; //get the hi nibble bij masking the lo bits (00001111)
lo_GCR = encode_data_gcr(lo); //example value: 0000 GCR = 01010
hi_GCR = encode_data_gcr(hi); //example value: 1000 GCR = 01001
//output = [0,1,2,3,4,5,6,7,8,9]
//value = [0,1,0,1,0,0,1,0,0,1]
// 01010 01001
int b = 4;
for (int i = 0; i < 10; i++)
{
if (i < 5) //01234
{ //i = 0 op
output[4-i] = (lo_GCR & 1); //01010
//01010 -> & 00001 -> 00000 output[4] = 0
//00101 -> & 00001 -> 00001 output[3] = 1
//00010 -> & 00001 -> 00000 output[2] = 0
//00001 -> & 00001 -> 00001 output[1] = 1
//00000 -> & 00001 -> 00000 output[0] = 0
lo_GCR >>= 1;
} else
{
output[i+b] = (hi_GCR & 1); //01001
//01001 -> & 00001 -> 00001 output[9] = 1
//00100 -> & 00001 -> 00000 output[8] = 0
//00010 -> & 00001 -> 00000 output[7] = 0
//00001 -> & 00001 -> 00001 output[6] = 1
//00000 -> & 00001 -> 00000 output[5] = 0
hi_GCR >>= 1;
b = b-2;
}
}
return output;
}
class Commodore64Encoder : public AbstractEncoder
{
public:
Commodore64Encoder(const EncoderProto& config):
AbstractEncoder(config),
_config(config.c64())
{}
public:
std::vector<std::shared_ptr<const Sector>> collectSectors(const Location& location, const Image& image) override
{
std::vector<std::shared_ptr<const Sector>> sectors;
if (location.head == 0)
{
unsigned numSectors = sectorsForC64Track(location.logicalTrack);
for (int sectorId=0; sectorId<numSectors; sectorId++)
{
const auto& sector = image.get(location.logicalTrack, 0, sectorId);
if (sector)
sectors.push_back(sector);
}
}
return sectors;
}
std::unique_ptr<Fluxmap> encode(const Location& location,
const std::vector<std::shared_ptr<const Sector>>& sectors, const Image& image) override
{
/* The format ID Character # 1 and # 2 are in the .d64 image only present
* in track 18 sector zero which contains the BAM info in byte 162 and 163.
* it is written in every header of every sector and track. headers are not
* stored in a d64 disk image so we have to get it from track 18 which
* contains the BAM.
*/
const auto& sectorData = image.get(C64_BAM_TRACK, 0, 0); //Read de BAM to get the DISK ID bytes
if (sectorData)
{
ByteReader br(sectorData->data);
br.seek(162); //goto position of the first Disk ID Byte
_formatByte1 = br.read_8();
_formatByte2 = br.read_8();
}
else
_formatByte1 = _formatByte2 = 0;
double clockRateUs = clockPeriodForC64Track(location.logicalTrack);
int bitsPerRevolution = 200000.0 / clockRateUs;
std::vector<bool> bits(bitsPerRevolution);
unsigned cursor = 0;
fillBitmapTo(bits, cursor, _config.post_index_gap_us() / clockRateUs, { true, false });
lastBit = false;
for (const auto& sector : sectors)
writeSector(bits, cursor, sector);
if (cursor >= bits.size())
Error() << fmt::format("track data overrun by {} bits", cursor - bits.size());
fillBitmapTo(bits, cursor, bits.size(), { true, false });
std::unique_ptr<Fluxmap> fluxmap(new Fluxmap);
fluxmap->appendBits(bits,
calculatePhysicalClockPeriod(clockRateUs*1e3, 200e6));
return fluxmap;
}
private:
void writeSector(std::vector<bool>& bits, unsigned& cursor, std::shared_ptr<const Sector> sector) const
{
/* Source: http://www.unusedino.de/ec64/technical/formats/g64.html
* 1. Header sync FF FF FF FF FF (40 'on' bits, not GCR)
* 2. Header info 52 54 B5 29 4B 7A 5E 95 55 55 (10 GCR bytes)
* 3. Header gap 55 55 55 55 55 55 55 55 55 (9 bytes, never read)
* 4. Data sync FF FF FF FF FF (40 'on' bits, not GCR)
* 5. Data block 55...4A (325 GCR bytes)
* 6. Inter-sector gap 55 55 55 55...55 55 (4 to 12 bytes, never read)
* 1. Header sync (SYNC for the next sector)
*/
if ((sector->status == Sector::OK) or (sector->status == Sector::BAD_CHECKSUM))
{
// There is data to encode to disk.
if ((sector->data.size() != C64_SECTOR_LENGTH))
Error() << fmt::format("unsupported sector size {} --- you must pick 256", sector->data.size());
// 1. Write header Sync (not GCR)
for (int i=0; i<6; i++)
write_bits(bits, cursor, C64_HEADER_DATA_SYNC, 1*8); /* sync */
// 2. Write Header info 10 GCR bytes
/*
* The 10 byte header info (#2) is GCR encoded and must be decoded to
* it's normal 8 bytes to be understood. Once decoded, its breakdown is
* as follows:
*
* Byte $00 - header block ID ($08)
* 01 - header block checksum 16 (EOR of $02-$05)
* 02 - Sector
* 03 - Track
* 04 - Format ID byte #2
* 05 - Format ID byte #1
* 06-07 - $0F ("off" bytes)
*/
uint8_t encodedTrack = ((sector->logicalTrack) + 1); // C64 track numbering starts with 1. Fluxengine with 0.
uint8_t encodedSector = sector->logicalSector;
// uint8_t formatByte1 = C64_FORMAT_ID_BYTE1;
// uint8_t formatByte2 = C64_FORMAT_ID_BYTE2;
uint8_t headerChecksum = (encodedTrack ^ encodedSector ^ _formatByte1 ^ _formatByte2);
write_bits(bits, cursor, encode_data(C64_HEADER_BLOCK_ID));
write_bits(bits, cursor, encode_data(headerChecksum));
write_bits(bits, cursor, encode_data(encodedSector));
write_bits(bits, cursor, encode_data(encodedTrack));
write_bits(bits, cursor, encode_data(_formatByte2));
write_bits(bits, cursor, encode_data(_formatByte1));
write_bits(bits, cursor, encode_data(C64_PADDING));
write_bits(bits, cursor, encode_data(C64_PADDING));
// 3. Write header GAP not GCR
for (int i=0; i<9; i++)
write_bits(bits, cursor, C64_HEADER_GAP, 1*8); /* header gap */
// 4. Write Data sync not GCR
for (int i=0; i<6; i++)
write_bits(bits, cursor, C64_HEADER_DATA_SYNC, 1*8); /* sync */
// 5. Write data block 325 GCR bytes
/*
* The 325 byte data block (#5) is GCR encoded and must be decoded to its
* normal 260 bytes to be understood. The data block is made up of the following:
*
* Byte $00 - data block ID ($07)
* 01-100 - 256 bytes data
* 101 - data block checksum (EOR of $01-100)
* 102-103 - $00 ("off" bytes, to make the sector size a multiple of 5)
*/
write_bits(bits, cursor, encode_data(C64_DATA_BLOCK_ID));
uint8_t dataChecksum = xorBytes(sector->data);
ByteReader br(sector->data);
int i = 0;
for (i = 0; i < C64_SECTOR_LENGTH; i++)
{
uint8_t val = br.read_8();
write_bits(bits, cursor, encode_data(val));
}
write_bits(bits, cursor, encode_data(dataChecksum));
write_bits(bits, cursor, encode_data(C64_PADDING));
write_bits(bits, cursor, encode_data(C64_PADDING));
//6. Write inter-sector gap 9 - 12 bytes nor gcr
for (int i=0; i<9; i++)
write_bits(bits, cursor, C64_INTER_SECTOR_GAP, 1*8); /* sync */
}
}
private:
const Commodore64EncoderProto& _config;
uint8_t _formatByte1;
uint8_t _formatByte2;
};
std::unique_ptr<AbstractEncoder> createCommodore64Encoder(const EncoderProto& config)
{
return std::unique_ptr<AbstractEncoder>(new Commodore64Encoder(config));
}
// vim: sw=4 ts=4 et