Files
fluxengine/arch/macintosh/encoder.cc

243 lines
5.8 KiB
C++

#include "globals.h"
#include "record.h"
#include "decoders/decoders.h"
#include "encoders/encoders.h"
#include "macintosh.h"
#include "crc.h"
#include "sectorset.h"
#include "writer.h"
#include "fmt/format.h"
#include <ctype.h>
FlagGroup macintoshEncoderFlags;
static DoubleFlag postIndexGapUs(
{ "--post-index-gap-us" },
"Post-index gap before first sector header (microseconds).",
0);
static DoubleFlag clockCompensation(
{ "--clock-compensation-factor" },
"Scale the output clock by this much.",
1.0);
static bool lastBit;
static double clockRateUsForTrack(unsigned track)
{
if (track < 16)
return 2.623;
if (track < 32)
return 2.861;
if (track < 48)
return 3.148;
if (track < 64)
return 3.497;
return 3.934;
}
static unsigned sectorsForTrack(unsigned track)
{
if (track < 16)
return 12;
if (track < 32)
return 11;
if (track < 48)
return 10;
if (track < 64)
return 9;
return 8;
}
static int encode_data_gcr(uint8_t gcr)
{
switch (gcr)
{
#define GCR_ENTRY(gcr, data) \
case data: return gcr;
#include "data_gcr.h"
#undef GCR_ENTRY
}
return -1;
};
/* This is extremely inspired by the MESS implementation, written by Nathan Woods
* and R. Belmont: https://github.com/mamedev/mame/blob/4263a71e64377db11392c458b580c5ae83556bc7/src/lib/formats/ap_dsk35.cpp
*/
static Bytes encode_crazy_data(const Bytes& input)
{
Bytes output;
ByteWriter bw(output);
ByteReader br(input);
uint8_t w1, w2, w3, w4;
static const int LOOKUP_LEN = MAC_SECTOR_LENGTH / 3;
uint8_t b1[LOOKUP_LEN + 1];
uint8_t b2[LOOKUP_LEN + 1];
uint8_t b3[LOOKUP_LEN + 1];
uint32_t c1 = 0;
uint32_t c2 = 0;
uint32_t c3 = 0;
for (int j=0;; j++)
{
c1 = (c1 & 0xff) << 1;
if (c1 & 0x0100)
c1++;
uint8_t val = br.read_8();
c3 += val;
if (c1 & 0x0100)
{
c3++;
c1 &= 0xff;
}
b1[j] = (val ^ c1) & 0xff;
val = br.read_8();
c2 += val;
if (c3 > 0xff)
{
c2++;
c3 &= 0xff;
}
b2[j] = (val ^ c3) & 0xff;
if (br.pos == 524)
break;
val = br.read_8();
c1 += val;
if (c2 > 0xff)
{
c1++;
c2 &= 0xff;
}
b3[j] = (val ^ c2) & 0xff;
}
uint32_t c4 = ((c1 & 0xc0) >> 6) | ((c2 & 0xc0) >> 4) | ((c3 & 0xc0) >> 2);
b3[LOOKUP_LEN] = 0;
for (int i = 0; i <= LOOKUP_LEN; i++)
{
w1 = b1[i] & 0x3f;
w2 = b2[i] & 0x3f;
w3 = b3[i] & 0x3f;
w4 = ((b1[i] & 0xc0) >> 2);
w4 |= ((b2[i] & 0xc0) >> 4);
w4 |= ((b3[i] & 0xc0) >> 6);
bw.write_8(w4);
bw.write_8(w1);
bw.write_8(w2);
if (i != LOOKUP_LEN)
bw.write_8(w3);
}
bw.write_8(c4 & 0x3f);
bw.write_8(c3 & 0x3f);
bw.write_8(c2 & 0x3f);
bw.write_8(c1 & 0x3f);
return output;
}
static void write_bits(std::vector<bool>& bits, unsigned& cursor, const std::vector<bool>& src)
{
for (bool bit : src)
{
if (cursor < bits.size())
bits[cursor++] = bit;
}
}
static void write_bits(std::vector<bool>& bits, unsigned& cursor, uint64_t data, int width)
{
cursor += width;
for (int i=0; i<width; i++)
{
unsigned pos = cursor - i - 1;
if (pos < bits.size())
bits[pos] = data & 1;
data >>= 1;
}
}
static uint8_t encode_side(uint8_t track, uint8_t side)
{
/* Mac disks, being weird, use the side byte to encode both the side (in
* bit 5) and also whether we're above track 0x3f (in bit 0).
*/
return (side ? 0x20 : 0x00) | ((track>0x3f) ? 0x01 : 0x00);
}
static void write_sector(std::vector<bool>& bits, unsigned& cursor, const Sector* sector)
{
if ((sector->data.size() != 512) && (sector->data.size() != 524))
Error() << "unsupported sector size --- you must pick 512 or 524";
write_bits(bits, cursor, 0xff, 1*8); /* pad byte */
for (int i=0; i<7; i++)
write_bits(bits, cursor, 0xff3fcff3fcffLL, 6*8); /* sync */
write_bits(bits, cursor, MAC_SECTOR_RECORD, 3*8);
uint8_t encodedTrack = sector->physicalTrack & 0x3f;
uint8_t encodedSector = sector->logicalSector;
uint8_t encodedSide = encode_side(sector->physicalTrack, sector->logicalSide);
uint8_t formatByte = MAC_FORMAT_BYTE;
uint8_t headerChecksum = (encodedTrack ^ encodedSector ^ encodedSide ^ formatByte) & 0x3f;
write_bits(bits, cursor, encode_data_gcr(encodedTrack), 1*8);
write_bits(bits, cursor, encode_data_gcr(encodedSector), 1*8);
write_bits(bits, cursor, encode_data_gcr(encodedSide), 1*8);
write_bits(bits, cursor, encode_data_gcr(formatByte), 1*8);
write_bits(bits, cursor, encode_data_gcr(headerChecksum), 1*8);
write_bits(bits, cursor, 0xdeaaff, 3*8);
write_bits(bits, cursor, 0xff3fcff3fcffLL, 6*8); /* sync */
write_bits(bits, cursor, MAC_DATA_RECORD, 3*8);
write_bits(bits, cursor, encode_data_gcr(sector->logicalSector), 1*8);
Bytes wireData;
wireData.writer().append(sector->data.slice(512, 12)).append(sector->data.slice(0, 512));
for (uint8_t b : encode_crazy_data(wireData))
write_bits(bits, cursor, encode_data_gcr(b), 1*8);
write_bits(bits, cursor, 0xdeaaff, 3*8);
}
std::unique_ptr<Fluxmap> MacintoshEncoder::encode(
int physicalTrack, int physicalSide, const SectorSet& allSectors)
{
if ((physicalTrack < 0) || (physicalTrack >= MAC_TRACKS_PER_DISK))
return std::unique_ptr<Fluxmap>();
double clockRateUs = clockRateUsForTrack(physicalTrack) * clockCompensation;
int bitsPerRevolution = 200000.0 / clockRateUs;
std::vector<bool> bits(bitsPerRevolution);
unsigned cursor = 0;
fillBitmapTo(bits, cursor, postIndexGapUs / clockRateUs, { true, false });
lastBit = false;
unsigned numSectors = sectorsForTrack(physicalTrack);
for (int sectorId=0; sectorId<numSectors; sectorId++)
{
const auto& sectorData = allSectors.get(physicalTrack, physicalSide, sectorId);
write_sector(bits, cursor, sectorData);
}
if (cursor >= bits.size())
Error() << fmt::format("track data overrun by {} bits", cursor - bits.size());
fillBitmapTo(bits, cursor, bits.size(), { true, false });
std::unique_ptr<Fluxmap> fluxmap(new Fluxmap);
fluxmap->appendBits(bits, clockRateUs*1e3);
return fluxmap;
}