new approach for error handling

This commit is contained in:
Manuel Domke
2018-04-22 04:41:43 +02:00
parent addb720996
commit 8a312f5ddf
3 changed files with 130 additions and 102 deletions

View File

@@ -148,44 +148,42 @@ int main(int argc, char **argv)
return 0; return 0;
} }
char *message; char *message = "no data?";
bool errorFlag = false;
if (opts.listDevices) { if (opts.listDevices) {
if(!listUSBDevices(&ftdic, &message)) { if(!listUSBDevices(&ftdic, &message)) {
fputs(message, stderr); fputs(message, stderr);
return 1; return 1;
} }
//fputs(message, stdout); // todo: put list of devices to &message and print here, not in libinfnoise
return 0; return 0;
} }
if (opts.devRandom) { if (opts.devRandom) {
inmWriteEntropyStart(BUFLEN/8u, opts.debug); // todo: create method in libinfnoise.h for this inmWriteEntropyStart(BUFLEN/8u, opts.debug); // todo: create method in libinfnoise.h for this?
// also todo: check if superUser in this mode (it will fail silently if not :-/) // also todo: check superUser in this mode (it will fail silently if not :-/)
} }
// Optionally run in the background and optionally write a PID-file // Optionally run in the background and optionally write a PID-file
startDaemon(&opts); startDaemon(&opts);
// initialize USB device and health check // initialize USB device, health check and Keccak state (see libinfnoise)
if (initInfnoise(&ftdic, opts.serial, &message, opts.debug) != true) { if (initInfnoise(&ftdic, opts.serial, &message, !opts.raw, opts.debug) != true) {
fputs(message, stderr); fputs(message, stderr);
return 1; // ERROR (message still goes to stderr) return 1; // ERROR
} }
// initialize keccak // endless loop
KeccakInitialize();
uint8_t keccakState[KeccakPermutationSizeInBytes];
KeccakInitializeState(keccakState);
uint64_t totalBytesWritten = 0u; uint64_t totalBytesWritten = 0u;
while(true) { while(true) {
uint64_t prevTotalBytesWritten = totalBytesWritten; uint64_t prevTotalBytesWritten = totalBytesWritten;
uint64_t bytesWritten = readData_private(&ftdic, keccakState, NULL, &message, opts.noOutput, opts.raw, opts.outputMultiplier, opts.devRandom); // calling libinfnoise's private readData method totalBytesWritten += readData_private(&ftdic, NULL, &message, &errorFlag, opts.noOutput, opts.raw, opts.outputMultiplier, opts.devRandom); // calling libinfnoise's private readData method
if (totalBytesWritten == (unsigned long)-1) { if (errorFlag) {
fputs(message, stderr); fprintf(stderr, "%s\n", message);
return 1; return 1;
} }
totalBytesWritten += bytesWritten;
if(opts.debug && (1u << 20u)*(totalBytesWritten/(1u << 20u)) > (1u << 20u)*(prevTotalBytesWritten/(1u << 20u))) { if(opts.debug && (1u << 20u)*(totalBytesWritten/(1u << 20u)) > (1u << 20u)*(prevTotalBytesWritten/(1u << 20u))) {
fprintf(stderr, "Output %lu bytes\n", (unsigned long)totalBytesWritten); fprintf(stderr, "Output %lu bytes\n", (unsigned long)totalBytesWritten);
} }

View File

@@ -1,4 +1,4 @@
/* Driver for the Infinite Noise Multiplier USB stick */ /* Library for the Infinite Noise Multiplier USB stick */
// Required to include clock_gettime // Required to include clock_gettime
#define _POSIX_C_SOURCE 200809L #define _POSIX_C_SOURCE 200809L
@@ -18,11 +18,61 @@
#include "libinfnoise.h" #include "libinfnoise.h"
#include "KeccakF-1600-interface.h" #include "KeccakF-1600-interface.h"
uint8_t keccakState[KeccakPermutationSizeInBytes];
bool initInfnoise(struct ftdi_context *ftdic,char *serial, char **message, bool keccak, bool debug) {
prepareOutputBuffer();
// initialize health check
if (!inmHealthCheckStart(PREDICTION_BITS, DESIGN_K, debug)) {
*message="Can't initialize health checker";
return false;
}
// initialize USB
if(!initializeUSB(ftdic, message, serial)) {
// Sometimes have to do it twice - not sure why
if(!initializeUSB(ftdic, message, serial)) {
return false;
}
}
// initialize keccak
if (keccak) {
KeccakInitialize();
KeccakInitializeState(keccakState);
}
// let healthcheck collect some data
uint32_t maxWarmupRounds = 500;
uint32_t warmupRounds = 0;
bool errorFlag = false;
while(!inmHealthCheckOkToUseData()) {
readData_private(ftdic, NULL, message, &errorFlag, false, true, 0, false);
warmupRounds++;
}
if (warmupRounds > maxWarmupRounds) {
*message = "Unable to collect enough entropy to initialize health checker.";
return false;
}
return true;
}
uint8_t outBuf[BUFLEN];
void prepareOutputBuffer() {
uint32_t i;
// Endless loop: set SW1EN and SW2EN alternately
for(i = 0u; i < BUFLEN; i++) {
// Alternate Ph1 and Ph2
outBuf[i] = i & 1? (1 << SWEN2) : (1 << SWEN1);
}
}
// Extract the INM output from the data received. Basically, either COMP1 or COMP2 // Extract the INM output from the data received. Basically, either COMP1 or COMP2
// changes, not both, so alternate reading bits from them. We get 1 INM bit of output // changes, not both, so alternate reading bits from them. We get 1 INM bit of output
// per byte read. Feed bits from the INM to the health checker. Return the expected // per byte read. Feed bits from the INM to the health checker. Return the expected
// bits of entropy. // bits of entropy.
uint32_t extractBytes(uint8_t *bytes, uint8_t *inBuf) { uint32_t extractBytes(uint8_t *bytes, uint8_t *inBuf, char **message, bool *errorFlag) {
inmClearEntropyLevel(); inmClearEntropyLevel();
uint32_t i; uint32_t i;
for(i = 0u; i < BUFLEN/8u; i++) { for(i = 0u; i < BUFLEN/8u; i++) {
@@ -35,10 +85,12 @@ uint32_t extractBytes(uint8_t *bytes, uint8_t *inBuf) {
bool even = j & 1u; // Use the even bit if j is odd bool even = j & 1u; // Use the even bit if j is odd
uint8_t bit = even? evenBit : oddBit; uint8_t bit = even? evenBit : oddBit;
byte = (byte << 1u) | bit; byte = (byte << 1u) | bit;
// This is a good place to feed the bit from the INM to the health checker. // This is a good place to feed the bit from the INM to the health checker.
if(!inmHealthCheckAddBit(evenBit, oddBit, even)) { if(!inmHealthCheckAddBit(evenBit, oddBit, even)) {
fputs("Health check of Infinite Noise Multiplier failed!\n", stderr); *message = "Health check of Infinite Noise Multiplier failed!";
exit(1); *errorFlag = true;
return 0;
} }
} }
bytes[i] = byte; bytes[i] = byte;
@@ -54,16 +106,17 @@ double diffTime(struct timespec *start, struct timespec *end) {
} }
// Write the bytes to either stdout, or /dev/random. // Write the bytes to either stdout, or /dev/random.
void outputBytes(uint8_t *bytes, uint32_t length, uint32_t entropy, bool writeDevRandom) { bool outputBytes(uint8_t *bytes, uint32_t length, uint32_t entropy, bool writeDevRandom, char **message) {
if(!writeDevRandom) { if(!writeDevRandom) {
if(fwrite(bytes, 1, length, stdout) != length) { if(fwrite(bytes, 1, length, stdout) != length) {
fputs("Unable to write output from Infinite Noise Multiplier\n", stderr); *message = "Unable to write output from Infinite Noise Multiplier";
exit(1); return false;
} }
} else { } else {
inmWaitForPoolToHaveRoom(); inmWaitForPoolToHaveRoom();
inmWriteEntropyToPool(bytes, length, entropy); inmWriteEntropyToPool(bytes, length, entropy);
} }
return true;
} }
bool isSuperUser(void) { bool isSuperUser(void) {
@@ -76,8 +129,9 @@ bool isSuperUser(void) {
// outputMultiplier is 0, we output only as many bits as we measure in entropy. // outputMultiplier is 0, we output only as many bits as we measure in entropy.
// This allows a user to generate hundreds of MiB per second if needed, for use // This allows a user to generate hundreds of MiB per second if needed, for use
// as cryptographic keys. // as cryptographic keys.
uint32_t processBytes(uint8_t *keccakState, uint8_t *bytes, uint8_t *result, uint32_t entropy, bool raw, uint32_t processBytes(uint8_t *bytes, uint8_t *result, uint32_t entropy,
bool writeDevRandom, uint32_t outputMultiplier, bool noOutput) { bool raw, bool writeDevRandom, uint32_t outputMultiplier, bool noOutput,
char **message, bool *errorFlag) {
//Use the lower of the measured entropy and the provable lower bound on //Use the lower of the measured entropy and the provable lower bound on
//average entropy. //average entropy.
if(entropy > inmExpectedEntropyPerBit*BUFLEN/INM_ACCURACY) { if(entropy > inmExpectedEntropyPerBit*BUFLEN/INM_ACCURACY) {
@@ -86,7 +140,10 @@ uint32_t processBytes(uint8_t *keccakState, uint8_t *bytes, uint8_t *result, uin
if(raw) { if(raw) {
// In raw mode, we just output raw data from the INM. // In raw mode, we just output raw data from the INM.
if (!noOutput) { if (!noOutput) {
outputBytes(bytes, BUFLEN/8u, entropy, writeDevRandom); if (!outputBytes(bytes, BUFLEN/8u, entropy, writeDevRandom, message)) {
*errorFlag = true;
return 0; // write failed
}
} else { } else {
if (result != NULL) { if (result != NULL) {
memcpy(result, bytes, BUFLEN/8u * sizeof(uint8_t)); memcpy(result, bytes, BUFLEN/8u * sizeof(uint8_t));
@@ -108,7 +165,10 @@ uint32_t processBytes(uint8_t *keccakState, uint8_t *bytes, uint8_t *result, uin
// Output all the bytes of entropy we have // Output all the bytes of entropy we have
KeccakExtract(keccakState, dataOut, (entropy + 63u)/64u); KeccakExtract(keccakState, dataOut, (entropy + 63u)/64u);
if (!noOutput) { if (!noOutput) {
outputBytes(dataOut, entropy/8u, entropy & 0x7u, writeDevRandom); if (!outputBytes(dataOut, entropy/8u, entropy & 0x7u, writeDevRandom, message)) {
*errorFlag = true;
return 0;
}
} else { } else {
if (result != NULL) { if (result != NULL) {
memcpy(result, dataOut, entropy/8u * sizeof(uint8_t)); memcpy(result, dataOut, entropy/8u * sizeof(uint8_t));
@@ -133,7 +193,10 @@ uint32_t processBytes(uint8_t *keccakState, uint8_t *bytes, uint8_t *result, uin
entropyThisTime = 8u*bytesToWrite; entropyThisTime = 8u*bytesToWrite;
} }
if (!noOutput) { if (!noOutput) {
outputBytes(dataOut, bytesToWrite, entropyThisTime, writeDevRandom); if (!outputBytes(dataOut, bytesToWrite, entropyThisTime, writeDevRandom, message)) {
*errorFlag = true;
return 0;
}
} else { } else {
//memcpy(result + bytesWritten, dataOut, bytesToWrite * sizeof(uint8_t)); //doesn't work? //memcpy(result + bytesWritten, dataOut, bytesToWrite * sizeof(uint8_t)); //doesn't work?
// alternative: loop through dataOut and append array elements to result.. // alternative: loop through dataOut and append array elements to result..
@@ -151,8 +214,9 @@ uint32_t processBytes(uint8_t *keccakState, uint8_t *bytes, uint8_t *result, uin
} }
} }
if(bytesWritten != outputMultiplier*(256u/8u)) { if(bytesWritten != outputMultiplier*(256u/8u)) {
fprintf(stderr, "Internal error outputing bytes\n"); *message = "Internal error outputing bytes";
exit(1); *errorFlag = true;
return 0;
} }
return bytesWritten; return bytesWritten;
} }
@@ -171,9 +235,9 @@ bool listUSBDevices(struct ftdi_context *ftdic, char** message) {
if (rc < 0) { if (rc < 0) {
if (!isSuperUser()) { if (!isSuperUser()) {
*message = "Can't find Infinite Noise Multiplier. Try running as super user?\n"; *message = "Can't find Infinite Noise Multiplier. Try running as super user?";
} else { } else {
*message = "Can't find Infinite Noise Multiplier\n"; *message = "Can't find Infinite Noise Multiplier";
} }
} }
@@ -182,7 +246,7 @@ bool listUSBDevices(struct ftdi_context *ftdic, char** message) {
rc = ftdi_usb_get_strings(ftdic, curdev->dev, manufacturer, 128, description, 128, serial, 128); rc = ftdi_usb_get_strings(ftdic, curdev->dev, manufacturer, 128, description, 128, serial, 128);
if (rc < 0) { if (rc < 0) {
if (!isSuperUser()) { if (!isSuperUser()) {
*message = "Can't find Infinite Noise Multiplier. Try running as super user?\n"; *message = "Can't find Infinite Noise Multiplier. Try running as super user?";
return false; return false;
} }
//*message = "ftdi_usb_get_strings failed: %d (%s)\n", rc, ftdi_get_error_string(ftdic)); //*message = "ftdi_usb_get_strings failed: %d (%s)\n", rc, ftdi_get_error_string(ftdic));
@@ -190,7 +254,7 @@ bool listUSBDevices(struct ftdi_context *ftdic, char** message) {
} }
// print to stdout // print to stdout
printf("Manufacturer: %s, Description: %s, Serial: %s\n", manufacturer, description, serial); printf("Manufacturer: %s, Description: %s, Serial: %s", manufacturer, description, serial);
curdev = curdev->next; curdev = curdev->next;
} }
@@ -205,7 +269,7 @@ bool initializeUSB(struct ftdi_context *ftdic, char **message, char *serial) {
// search devices // search devices
int rc = 0; int rc = 0;
if ((rc = ftdi_usb_find_all(ftdic, &devlist, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID)) < 0) { if ((rc = ftdi_usb_find_all(ftdic, &devlist, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID)) < 0) {
*message = "Can't find Infinite Noise Multiplier\n"; *message = "Can't find Infinite Noise Multiplier";
return false; return false;
} }
@@ -214,13 +278,13 @@ bool initializeUSB(struct ftdi_context *ftdic, char **message, char *serial) {
if (serial == NULL) { if (serial == NULL) {
// more than one found AND no serial given // more than one found AND no serial given
if (rc >= 2) { if (rc >= 2) {
*message = "Multiple Infnoise TRNGs found and serial not specified, using the first one!\n"; *message = "Multiple Infnoise TRNGs found and serial not specified, using the first one!";
} }
if (ftdi_usb_open(ftdic, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID) < 0) { if (ftdi_usb_open(ftdic, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID) < 0) {
if(!isSuperUser()) { if(!isSuperUser()) {
*message = "Can't open Infinite Noise Multiplier. Try running as super user?\n"; *message = "Can't open Infinite Noise Multiplier. Try running as super user?";
} else { } else {
*message = "Can't open Infinite Noise Multiplier\n"; *message = "Can't open Infinite Noise Multiplier";
} }
return false; return false;
} }
@@ -229,9 +293,9 @@ bool initializeUSB(struct ftdi_context *ftdic, char **message, char *serial) {
rc = ftdi_usb_open_desc(ftdic, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID, NULL, serial); rc = ftdi_usb_open_desc(ftdic, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID, NULL, serial);
if (rc < 0) { if (rc < 0) {
if(!isSuperUser()) { if(!isSuperUser()) {
*message = "Can't find Infinite Noise Multiplier. Try running as super user?\n"; *message = "Can't find Infinite Noise Multiplier. Try running as super user?";
} else { } else {
*message = "Can't find Infinite Noise Multiplier with given serial\n"; *message = "Can't find Infinite Noise Multiplier with given serial";
} }
return false; return false;
} }
@@ -241,18 +305,18 @@ bool initializeUSB(struct ftdi_context *ftdic, char **message, char *serial) {
// Set high baud rate // Set high baud rate
rc = ftdi_set_baudrate(ftdic, 30000); rc = ftdi_set_baudrate(ftdic, 30000);
if(rc == -1) { if(rc == -1) {
*message = "Invalid baud rate\n"; *message = "Invalid baud rate";
return false; return false;
} else if(rc == -2) { } else if(rc == -2) {
*message = "Setting baud rate failed\n"; *message = "Setting baud rate failed";
return false; return false;
} else if(rc == -3) { } else if(rc == -3) {
*message = "Infinite Noise Multiplier unavailable\n"; *message = "Infinite Noise Multiplier unavailable";
return false; return false;
} }
rc = ftdi_set_bitmode(ftdic, MASK, BITMODE_SYNCBB); rc = ftdi_set_bitmode(ftdic, MASK, BITMODE_SYNCBB);
if(rc == -1) { if(rc == -1) {
*message = "Can't enable bit-bang mode\n"; *message = "Can't enable bit-bang mode";
return false; return false;
} else if(rc == -2) { } else if(rc == -2) {
*message = "Infinite Noise Multiplier unavailable\n"; *message = "Infinite Noise Multiplier unavailable\n";
@@ -262,51 +326,40 @@ bool initializeUSB(struct ftdi_context *ftdic, char **message, char *serial) {
// Just test to see that we can write and read. // Just test to see that we can write and read.
uint8_t buf[64u] = {0u,}; uint8_t buf[64u] = {0u,};
if(ftdi_write_data(ftdic, buf, 64) != 64) { if(ftdi_write_data(ftdic, buf, 64) != 64) {
*message = "USB write failed\n"; *message = "USB write failed";
return false; return false;
} }
if(ftdi_read_data(ftdic, buf, 64) != 64) { if(ftdi_read_data(ftdic, buf, 64) != 64) {
*message = "USB read failed\n"; *message = "USB read failed";
return false; return false;
} }
return true; return true;
} }
uint32_t readRawData(struct ftdi_context *ftdic, uint8_t *result, char **message, bool *errorFlag) {
uint64_t readRawData(struct ftdi_context *ftdic, uint8_t *result, char **message) { return readData_private(ftdic, result, message, errorFlag, false, true, 0, false);
return readData_private(ftdic, NULL, result, message, false, true, 0, false);
} }
uint64_t readData(struct ftdi_context *ftdic, uint8_t *keccakState, uint8_t *result, char **message, uint32_t outputMultiplier) { uint32_t readData(struct ftdi_context *ftdic, uint8_t *result, char **message, bool *errorFlag, uint32_t outputMultiplier) {
return readData_private(ftdic, keccakState, result, message, false, false, outputMultiplier, false); return readData_private(ftdic, result, message, errorFlag, false, false, outputMultiplier, false);
} }
uint8_t outBuf[BUFLEN]; uint32_t readData_private(struct ftdi_context *ftdic, uint8_t *result, char **message, bool *errorFlag,
void prepareOutputBuffer() { bool noOutput, bool raw, uint32_t outputMultiplier, bool devRandom) {
uint32_t i;
// Endless loop: set SW1EN and SW2EN alternately
for(i = 0u; i < BUFLEN; i++) {
// Alternate Ph1 and Ph2
outBuf[i] = i & 1? (1 << SWEN2) : (1 << SWEN1);
}
}
uint64_t readData_private(struct ftdi_context *ftdic, uint8_t *keccakState, uint8_t *result, char **message, bool noOutput, bool raw, uint32_t outputMultiplier, bool devRandom) {
uint8_t inBuf[BUFLEN]; uint8_t inBuf[BUFLEN];
uint64_t totalBytesWritten = 0u;
struct timespec start; struct timespec start;
clock_gettime(CLOCK_REALTIME, &start); clock_gettime(CLOCK_REALTIME, &start);
// write clock signal // write clock signal
if(ftdi_write_data(ftdic, outBuf, BUFLEN) != BUFLEN) { if(ftdi_write_data(ftdic, outBuf, BUFLEN) != BUFLEN) {
*message = "USB write failed"; *message = "USB write failed";
return -1; *errorFlag = true;
} }
// and read 512 byte from the internal buffer (in synchronous bitbang mode) // and read 512 byte from the internal buffer (in synchronous bitbang mode)
if(ftdi_read_data(ftdic, inBuf, BUFLEN) != BUFLEN) { if(ftdi_read_data(ftdic, inBuf, BUFLEN) != BUFLEN) {
*message = "USB read failed"; *message = "USB read failed";
return -1; *errorFlag = true;
} }
struct timespec end; struct timespec end;
@@ -314,37 +367,15 @@ uint64_t readData_private(struct ftdi_context *ftdic, uint8_t *keccakState, uint
uint32_t us = diffTime(&start, &end); uint32_t us = diffTime(&start, &end);
if(us <= MAX_MICROSEC_FOR_SAMPLES) { if(us <= MAX_MICROSEC_FOR_SAMPLES) {
uint8_t bytes[BUFLEN/8u]; uint8_t bytes[BUFLEN/8u];
uint32_t entropy = extractBytes(bytes, inBuf); uint32_t entropy = extractBytes(bytes, inBuf, message, errorFlag);
// call health check and process bytes if OK // call health check and process bytes if OK
if(!noOutput && inmHealthCheckOkToUseData() && inmEntropyOnTarget(entropy, BUFLEN)) { if (inmHealthCheckOkToUseData() && inmEntropyOnTarget(entropy, BUFLEN)) {
totalBytesWritten += processBytes(keccakState, bytes, result, entropy, raw, devRandom, outputMultiplier, noOutput); uint32_t byteswritten = processBytes(bytes, result, entropy, raw, devRandom, outputMultiplier, noOutput, message, errorFlag);
return byteswritten;
} }
} }
return totalBytesWritten; return 0;
}
uint8_t keccakState[KeccakPermutationSizeInBytes];
bool initInfnoise(struct ftdi_context *ftdic,char *serial, char **message, bool debug) {
prepareOutputBuffer();
// initialize health check
if (!inmHealthCheckStart(PREDICTION_BITS, DESIGN_K, debug)) {
*message="Can't initialize health checker";
return false;
}
// initialize USB
if(!initializeUSB(ftdic, message, serial)) {
// Sometimes have to do it twice - not sure why
if(!initializeUSB(ftdic, message, serial)) {
return false;
}
}
return true;
// initialize keccak
KeccakInitialize();
KeccakInitializeState(keccakState);
} }
#ifdef LIB_EXAMPLE_PROGRAM #ifdef LIB_EXAMPLE_PROGRAM
@@ -368,7 +399,6 @@ int main() {
} else { } else {
resultSize = multiplier*32u; resultSize = multiplier*32u;
} }
fprintf(stderr, "%d\n", resultSize);
uint64_t totalBytesWritten = 0u; uint64_t totalBytesWritten = 0u;

View File

@@ -47,18 +47,18 @@ void inmWriteEntropyStart(uint32_t bufLen, bool debug);
void inmWriteEntropyToPool(uint8_t *bytes, uint32_t length, uint32_t entropy); void inmWriteEntropyToPool(uint8_t *bytes, uint32_t length, uint32_t entropy);
void inmWaitForPoolToHaveRoom(void); void inmWaitForPoolToHaveRoom(void);
void inmDumpStats(void); void inmDumpStats(void);
//bool isSuperUser(void);
extern double inmK, inmExpectedEntropyPerBit; extern double inmK, inmExpectedEntropyPerBit;
bool initializeUSB(struct ftdi_context *ftdic, char **message, char *serial);
void prepareOutputBuffer();
struct timespec; struct timespec;
double diffTime(struct timespec *start, struct timespec *end); double diffTime(struct timespec *start, struct timespec *end);
uint32_t extractBytes(uint8_t *bytes, uint8_t *inBuf); uint32_t extractBytes(uint8_t *bytes, uint8_t *inBuf, char **message, bool *errorFlag);
void outputBytes(uint8_t *bytes, uint32_t length, uint32_t entropy, bool writeDevRandom);
uint32_t processBytes(uint8_t *keccakState, uint8_t *bytes, uint8_t *result, uint32_t entropy, bool raw,
bool writeDevRandom, uint32_t outputMultiplier, bool noOutput);
uint64_t readData_private(struct ftdi_context *ftdic, uint8_t *keccakState, uint8_t *result, char **message, bool outputBytes(uint8_t *bytes, uint32_t length, uint32_t entropy, bool writeDevRandom, char **message);
bool noOutput, bool raw, uint32_t outputMultiplier, bool devRandom); uint32_t processBytes(uint8_t *bytes, uint8_t *result, uint32_t entropy, bool raw,
bool writeDevRandom, uint32_t outputMultiplier, bool noOutput, char **message, bool *errorFlag);
//void add_to_list(struct inm_devlist *list, struct infnoise_device *dev);
uint32_t readData_private(struct ftdi_context *ftdic, uint8_t *result, char **message, bool *errorFlag, bool noOutput, bool raw, uint32_t outputMultiplier, bool devRandom);