Got the first breadboard working

This commit is contained in:
Bill Cox
2014-10-19 11:56:38 -04:00
parent 1cebac7361
commit 9a079fed74
2 changed files with 62 additions and 35 deletions

View File

@@ -31,7 +31,7 @@ confirmed.
#define INM_MIN_DATA 10000
#define INM_MIN_SAMPLE_SIZE 100
#define INM_ACCURACY 1.05
#define INM_MAX_SEQUENCE 5
#define INM_MAX_SEQUENCE 20
#define INM_MAX_COUNT (1 << 14)
// Matches the Keccac sponge size
#define INM_MAX_ENTROPY 1600
@@ -48,6 +48,7 @@ static double inmCurrentProbability;
static uint64_t inmTotalBits;
static bool inmPrevBit;
static uint32_t inmEntropyLevel;
static uint32_t inmNumSequentialZeros, inmNumSequentialOnes;
// Free memory used by the health check.
void inmHealthCheckStop(void) {
@@ -85,6 +86,8 @@ bool inmHealthCheckStart(uint8_t N, double K) {
inmExpectedEntropyPerBit = log(K)/log(2.0);
inmTotalBits = 0;
inmPrevBit = false;
inmNumSequentialZeros = 0;
inmNumSequentialOnes = 0;
resetStats();
if(inmOnes == NULL || inmZeros == NULL) {
inmHealthCheckStop();
@@ -112,6 +115,32 @@ static void scaleStats(void) {
// This should be called for each bit generated.
bool inmHealthCheckAddBit(bool bit) {
inmTotalBits++;
if((inmTotalBits & 0xfff) == 0) {
printf("Estimated entropy per bit: %f, estimated K: %f\n", inmHealthCheckEstimateEntropyPerBit(),
inmHealthCheckEstimateK());
}
inmPrevBits = (inmPrevBits << 1) & ((1 << inmN)-1);
if(inmPrevBit) {
inmPrevBits |= 1;
}
inmPrevBit = bit;
if(inmNumBitsSampled > 100) {
if(bit) {
inmNumSequentialOnes++;
inmNumSequentialZeros = 0;
if(inmNumSequentialOnes > INM_MAX_SEQUENCE) {
printf("Maximum sequence of %d 1's exceeded\n", INM_MAX_SEQUENCE);
exit(1);
}
} else {
inmNumSequentialZeros++;
inmNumSequentialOnes = 0;
if(inmNumSequentialZeros > INM_MAX_SEQUENCE) {
printf("Maximum sequence of %d 0's exceeded\n", INM_MAX_SEQUENCE);
exit(1);
}
}
}
if(inmOnes[inmPrevBits] > INM_MIN_SAMPLE_SIZE ||
inmZeros[inmPrevBits] > INM_MIN_SAMPLE_SIZE) {
uint32_t total = inmZeros[inmPrevBits] + inmOnes[inmPrevBits];
@@ -146,12 +175,6 @@ bool inmHealthCheckAddBit(bool bit) {
scaleStats();
}
}
// Check for max sequence of 0's or 1's.
uint32_t lowBits = inmPrevBits & ((1 << (INM_MAX_SEQUENCE+1))-1);
if(lowBits == 0 || lowBits == ((1 << (INM_MAX_SEQUENCE+1))-1)) {
printf("Maximum sequence of %d 0's or 1's exceeded\n", INM_MAX_SEQUENCE);
return false;
}
//printf("prevBits: %x\n", inmPrevBits);
if(inmNumBitsSampled < INM_MIN_DATA) {
return true; // Not enough data yet to test
@@ -177,9 +200,6 @@ bool inmHealthCheckAddBit(bool bit) {
// Once we have enough samples, we know that entropyPerBit = log(K)/log(2), so
// K must be 2^entryopPerBit.
double inmHealthCheckEstimateK(void) {
if(inmNumBitsOfEntropy < INM_MIN_DATA) {
return inmK;
}
double entropyPerBit = (double)inmNumBitsOfEntropy/inmNumBitsCounted;
return pow(2.0, entropyPerBit);
}
@@ -187,9 +207,6 @@ double inmHealthCheckEstimateK(void) {
// Once we have enough samples, we know that entropyPerBit = log(K)/log(2), so
// K must be 2^entryopPerBit.
double inmHealthCheckEstimateEntropyPerBit(void) {
if(inmNumBitsSampled < INM_MIN_DATA) {
return inmExpectedEntropyPerBit;
}
return (double)inmNumBitsOfEntropy/inmNumBitsCounted;
}
@@ -277,13 +294,8 @@ static inline bool updateA(double *A, double K, double noise) {
}
static inline bool computeRandBit(double *A, double K, double noiseAmplitude) {
inmPrevBits = (inmPrevBits << 1) & ((1 << inmN)-1);
if(inmPrevBit) {
inmPrevBits |= 1;
}
double noise = noiseAmplitude*(((double)rand()/RAND_MAX) - 0.5);
inmPrevBit = updateA(A, K, noise);
return inmPrevBit;
return updateA(A, K, noise);
}
int main() {

View File

@@ -27,26 +27,23 @@ static void extractBytes(uint8_t *bytes, uint8_t *inBuf, bool raw) {
uint32_t j;
uint8_t byte = 0;
for(j = 0; j < 8; j++) {
byte <<= 1;
uint8_t bit = 0;
//printf("%x ", inBuf[i*8 + j] & ~MASK);
uint8_t val = inBuf[i*8 + j];
uint8_t bit;
if(j & 1) {
// SWEN2 is enabled on odd cycles. We should read COMP1 since it's stable
if(bytes[i*8 + j] & (1 << COMP1)) {
bit = 1;
}
bit = (val >> COMP1) & 1;
} else {
// SWEN1 is enabled on even cycles. We should read COMP2 since it's stable
if(bytes[i*8 + j] & (1 << COMP1)) {
bit = 1;
}
bit = (val >> COMP2) & 1;
}
byte |= bit;
byte = (byte << 1) | bit;
// This is a good place to feed the bit from the INM to the health checker.
//printf("Adding bit %u\n", bit);
if(!raw && !inmHealthCheckAddBit(bit)) {
fprintf(stderr, "Health check of Infinite Noise Multiplier failed!\n");
exit(1);
}
}
//printf("extracted byte:%x\n", byte);
bytes[i] = byte;
}
}
@@ -58,10 +55,12 @@ static void processBytes(uint8_t *keccakState, uint8_t *bytes, bool raw) {
if(raw) {
// In raw mode, we disable the health check and whitening, and just output raw
// data from the INM.
/*
if(fwrite(bytes, 1, BUFLEN/8, stdout) != BUFLEN/8) {
fprintf(stderr, "Unable to write output from Infinite Noise Multiplier\n");
exit(1);
}
*/
return;
}
uint32_t i;
@@ -73,10 +72,12 @@ static void processBytes(uint8_t *keccakState, uint8_t *bytes, bool raw) {
// Also, we output data at 1/2 the rate of entropy added to the sponge
uint8_t dataOut[8];
KeccakExtract(keccakState, dataOut, 1);
/*
if(fwrite(dataOut, 1, 8, stdout) != 8) {
fprintf(stderr, "Unable to write output from Infinite Noise Multiplier\n");
exit(1);
}
*/
inmHealthCheckReduceEntropyLevel(16);
}
}
@@ -98,7 +99,7 @@ int main(int argc, char **argv)
// Initialize FTDI context
ftdi_init(&ftdic);
if(!inmHealthCheckStart(7, 1.82)) {
if(!inmHealthCheckStart(9, 1.82)) {
puts("Can't intialize health checker\n");
return 1;
}
@@ -112,7 +113,8 @@ int main(int argc, char **argv)
}
// Set high baud rate
int rc = ftdi_set_baudrate(&ftdic, 3000000);
int rc = 0;
//rc = ftdi_set_baudrate(&ftdic, 3000000);
if(rc == -1) {
puts("Invalid baud rate\n");
return -1;
@@ -134,15 +136,27 @@ int main(int argc, char **argv)
return -1;
}
/* Endless loop: invert LED state, write output, pause 1 second */
// Endless loop: set SW1EN and SW2EN alternately
uint32_t i;
uint8_t outBuf[BUFLEN], inBuf[BUFLEN];
for(i = 0; i < BUFLEN; i++) {
// Alternate Ph1 and Ph2 - maybe should have both off in between
outBuf[i] = i & 1? (1 << SWEN2) : (1 << SWEN1);
//outBuf[i] = i;
}
//outBuf[BUFLEN-1] = 0;
while(true) {
for(i = 0; i < BUFLEN; i++) {
if(ftdi_write_data(&ftdic, outBuf + i, 1) != 1) {
puts("USB write failed\n");
return -1;
}
if(ftdi_read_data(&ftdic, inBuf + i, 1) != 1) {
puts("USB read failed\n");
return -1;
}
}
/*
if(ftdi_write_data(&ftdic, outBuf, BUFLEN) != BUFLEN) {
puts("USB write failed\n");
return -1;
@@ -151,9 +165,10 @@ int main(int argc, char **argv)
puts("USB read failed\n");
return -1;
}
*/
uint8_t bytes[BUFLEN/8];
extractBytes(bytes, inBuf, raw);
processBytes(keccakState, bytes, raw);
//processBytes(keccakState, bytes, raw);
}
return 0;
}