Updates from Rune Magnus

This commit is contained in:
Bill Cox
2016-06-29 08:28:37 -07:00
parent 5b838c872a
commit bfaa38b048
11 changed files with 214 additions and 275 deletions

View File

@@ -13,65 +13,28 @@
#include "infnoise.h"
#include "KeccakF-1600-interface.h"
// Convert an address value 0 to 15 to an 8-bit value using ADDR0 .. ADDR3.
static uint8_t makeAddress(uint8_t addr) {
uint8_t value = 0;
if(addr & 1) {
value |= 1 << ADDR0;
}
if(addr & 2) {
value |= 1 << ADDR1;
}
if(addr & 4) {
value |= 1 << ADDR2;
}
if(addr & 8) {
value |= 1 << ADDR3;
}
return value;
}
// Extract a value form 0 to 15 from the ADDR0 .. ADDR3 bits.
static uint8_t extractAddress(uint8_t value) {
uint8_t addr = 0;
if(value & (1 << ADDR0)) {
addr |= 1;
}
if(value & (1 << ADDR1)) {
addr |= 2;
}
if(value & (1 << ADDR2)) {
addr |= 4;
}
if(value & (1 << ADDR3)) {
addr |= 8;
}
return addr;
}
// Extract the INM output from the data received. Basically, either COMP1 or COMP2
// changes, not both, so alternate reading bits from them. We get 1 INM bit of output
// per byte read. Feed bits from the INM to the health checker. Return the expected
// bits of entropy.
static uint32_t extractBytes(uint8_t *bytes, uint8_t *inBuf, bool raw) {
static uint32_t extractBytes(uint8_t *bytes, uint8_t *inBuf) {
inmClearEntropyLevel();
//printf("New batch\n");
uint32_t i;
for(i = 0; i < BUFLEN/8; i++) {
for(i = 0u; i < BUFLEN/8u; i++) {
uint32_t j;
uint8_t byte = 0;
for(j = 0; j < 8; j++) {
//printf("%x ", inBuf[i*8 + j] & ~MASK);
uint8_t val = inBuf[i*8 + j];
uint8_t evenBit = (val >> COMP2) & 1;
uint8_t oddBit = (val >> COMP1) & 1;
bool even = j & 1; // Use the even bit if j is odd
uint8_t byte = 0u;
for(j = 0u; j < 8u; j++) {
//printf("%x ", inBuf[i*8u + j] & ~MASK);
uint8_t val = inBuf[i*8u + j];
uint8_t evenBit = (val >> COMP2) & 1u;
uint8_t oddBit = (val >> COMP1) & 1u;
bool even = j & 1u; // Use the even bit if j is odd
uint8_t bit = even? evenBit : oddBit;
byte = (byte << 1) | bit;
byte = (byte << 1u) | bit;
// This is a good place to feed the bit from the INM to the health checker.
uint8_t addr = extractAddress(val);
//printf("Address: %u, adding evenBit:%u oddBit:%u even:%u\n", addr, evenBit, oddBit, even);
if(!inmHealthCheckAddBit(evenBit, oddBit, even, addr)) {
if(!inmHealthCheckAddBit(evenBit, oddBit, even)) {
fputs("Health check of Infinite Noise Multiplier failed!\n", stderr);
exit(1);
}
@@ -110,8 +73,8 @@ static uint32_t processBytes(uint8_t *keccakState, uint8_t *bytes, uint32_t entr
}
if(raw) {
// In raw mode, we just output raw data from the INM.
outputBytes(bytes, BUFLEN/8, entropy, writeDevRandom);
return BUFLEN/8;
outputBytes(bytes, BUFLEN/8u, entropy, writeDevRandom);
return BUFLEN/8u;
}
// Note that BUFLEN has to be less than 1600 by enough to make the sponge secure,
// since outputing all 1600 bits would tell an attacker the Keccak state, allowing
@@ -120,37 +83,37 @@ static uint32_t processBytes(uint8_t *keccakState, uint8_t *bytes, uint32_t entr
// we instantly recover (reseed) from a state compromise, which is when an attacker
// gets a snapshot of the keccak state. BUFLEN must be a multiple of 64, since
// Keccak-1600 uses 64-bit "lanes".
KeccakAbsorb(keccakState, bytes, BUFLEN/64);
uint8_t dataOut[16*8];
if(outputMultiplier == 0) {
KeccakAbsorb(keccakState, bytes, BUFLEN/64u);
uint8_t dataOut[16u*8u];
if(outputMultiplier == 0u) {
// Output all the bytes of entropy we have
KeccakExtract(keccakState, dataOut, (entropy + 63)/64);
outputBytes(dataOut, entropy/8, entropy & 0x7, writeDevRandom);
return entropy/8;
KeccakExtract(keccakState, dataOut, (entropy + 63u)/64u);
outputBytes(dataOut, entropy/8u, entropy & 0x7u, writeDevRandom);
return entropy/8u;
}
// Output 256*outputMultipler bytes.
int32_t numBits = outputMultiplier*256;
uint32_t bytesWritten = 0;
while(numBits > 0) {
uint32_t numBits = outputMultiplier*256u;
uint32_t bytesWritten = 0u;
while(numBits > 0u) {
// Write up to 1024 bits at a time.
uint32_t bytesToWrite = 1024/8;
if(bytesToWrite > numBits/8) {
bytesToWrite = numBits/8;
uint32_t bytesToWrite = 1024u/8u;
if(bytesToWrite > numBits/8u) {
bytesToWrite = numBits/8u;
}
KeccakExtract(keccakState, dataOut, bytesToWrite/8);
KeccakExtract(keccakState, dataOut, bytesToWrite/8u);
uint32_t entropyThisTime = entropy;
if(entropyThisTime > 8*bytesToWrite) {
entropyThisTime = 8*bytesToWrite;
if(entropyThisTime > 8u*bytesToWrite) {
entropyThisTime = 8u*bytesToWrite;
}
outputBytes(dataOut, bytesToWrite, entropyThisTime, writeDevRandom);
bytesWritten += bytesToWrite;
numBits -= bytesToWrite*8;
numBits -= bytesToWrite*8u;
entropy -= entropyThisTime;
if(numBits > 0) {
if(numBits > 0u) {
KeccakPermutation(keccakState);
}
}
if(bytesWritten != outputMultiplier*(256/8)) {
if(bytesWritten != outputMultiplier*(256u/8u)) {
fprintf(stderr, "Internal error outputing bytes\n");
exit(1);
}
@@ -193,7 +156,7 @@ static bool initializeUSB(struct ftdi_context *ftdic, char **message) {
}
// Just test to see that we can write and read.
uint8_t buf[64] = {0,};
uint8_t buf[64u] = {0u,};
if(ftdi_write_data(ftdic, buf, 64) != 64) {
*message = "USB write failed\n";
return false;
@@ -209,7 +172,7 @@ static bool initializeUSB(struct ftdi_context *ftdic, char **message) {
static double diffTime(struct timespec *start, struct timespec *end) {
uint32_t seconds = end->tv_sec - start->tv_sec;
int32_t nanoseconds = end->tv_nsec - start->tv_nsec;
return seconds*1e6 + nanoseconds/1000.0;
return seconds*1.0e6 + nanoseconds/1000.0;
}
int main(int argc, char **argv)
@@ -219,8 +182,8 @@ int main(int argc, char **argv)
bool debug = false;
bool writeDevRandom = false;
bool noOutput = false;
uint32_t outputMultiplier = 0; // We output all the entropy when outputMultiplier == 0
uint32_t xArg;
uint32_t outputMultiplier = 0u; // We output all the entropy when outputMultiplier == 0
int xArg;
bool multiplierAssigned = false;
bool pidFile = false;
char *pidFileName = NULL;
@@ -276,14 +239,14 @@ int main(int argc, char **argv)
}
if(!multiplierAssigned && writeDevRandom) {
outputMultiplier = 2; // Don't throw away entropy when writing to /dev/random unless told to do so
outputMultiplier = 2u; // Don't throw away entropy when writing to /dev/random unless told to do so
}
// Optionally run in the background and optionally write a PID-file
startDaemon(runDaemon, pidFile, pidFileName);
if(writeDevRandom) {
inmWriteEntropyStart(BUFLEN/8, debug);
inmWriteEntropyStart(BUFLEN/8u, debug);
}
if(!inmHealthCheckStart(PREDICTION_BITS, DESIGN_K, debug)) {
fputs("Can't intialize health checker\n", stderr);
@@ -304,36 +267,35 @@ int main(int argc, char **argv)
// Endless loop: set SW1EN and SW2EN alternately
uint32_t i;
uint8_t outBuf[BUFLEN], inBuf[BUFLEN];
for(i = 0; i < BUFLEN; i++) {
// Alternate Ph1 and Ph2 - maybe should have both off in between
for(i = 0u; i < BUFLEN; i++) {
// Alternate Ph1 and Ph2
outBuf[i] = i & 1? (1 << SWEN2) : (1 << SWEN1);
outBuf[i] |= makeAddress(i & 0xf);
}
uint64_t totalBytesWritten = 0;
uint64_t totalBytesWritten = 0u;
while(true) {
struct timespec start;
clock_gettime(CLOCK_REALTIME, &start);
if(ftdi_write_data(&ftdic, outBuf, BUFLEN) != BUFLEN) {
fputs("USB write failed\n", stderr);
return -1;
return 1;
}
if(ftdi_read_data(&ftdic, inBuf, BUFLEN) != BUFLEN) {
fputs("USB read failed\n", stderr);
return -1;
return 1;
}
struct timespec end;
clock_gettime(CLOCK_REALTIME, &end);
uint32_t us = diffTime(&start, &end);
//printf("diffTime:%u us\n", us);
if(us <= MAX_MICROSEC_FOR_SAMPLES) {
uint8_t bytes[BUFLEN/8];
uint32_t entropy = extractBytes(bytes, inBuf, raw);
uint8_t bytes[BUFLEN/8u];
uint32_t entropy = extractBytes(bytes, inBuf);
if(!noOutput && inmHealthCheckOkToUseData() && inmEntropyOnTarget(entropy, BUFLEN)) {
uint64_t prevTotalBytesWritten = totalBytesWritten;
totalBytesWritten += processBytes(keccakState, bytes, entropy, raw, writeDevRandom, outputMultiplier);
if(debug && (1 << 20)*(totalBytesWritten/(1 << 20)) > (1 << 20)*(prevTotalBytesWritten/(1 << 20))) {
if(debug && (1u << 20u)*(totalBytesWritten/(1u << 20u)) > (1u << 20u)*(prevTotalBytesWritten/(1u << 20u))) {
fprintf(stderr, "Output %lu bytes\n", (unsigned long)totalBytesWritten);
}
}