Files
infnoise/software/infnoise_win.c
aecium 259213505f can read file while being written
changed the fopen_s to _fsopen so that the output file can read while it
is being created.
2015-01-27 17:27:31 -06:00

360 lines
12 KiB
C

/* Driver for the Infinite Noise Multiplier USB stick */
// Required to include clock_gettime
#define _POSIX_C_SOURCE 200809L
#include <stdlib.h>
#include <share.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include "VisualStudio\ftdi\ftd2xx.h"
#include "infnoise.h"
#include "Keccak\KeccakF-1600-interface.h"
// Pipes in Windows basically don't work, so if you want output from a program to redirect to a file
// you are forced to write to the file directly, rather than do infnoise > foo.
FILE *outFile;
// The FT240X has a 512 byte buffer. Must be multiple of 64
// We also write this in one go to the Keccak sponge, which is at most 1600 bits
#define BUFLEN 512
// This is how many previous bits are used to predict the next bit from the INM
#define PREDICTION_BITS 14
// This is the maximum time we allow to pass to perform the I/O operations, since long
// delays can reduce entropy from the INM.
#define MAX_MICROSEC_FOR_SAMPLES 5000
// This is the gain of each of the two op-amp stages in the INM
#define DESIGN_K 1.82
#define BITMODE_SYNCBB 0x4
//#define VERSION1
// This defines which pins on the FT240X are used
#ifdef VERSION1
// The V1 version is the original raw board with the edge connector instead of a real USB plug
#define COMP1 2
#define COMP2 0
#define SWEN1 4
#define SWEN2 1
#else
// This is the production version with a real USB plug
#define COMP1 1
#define COMP2 4
#define SWEN1 2
#define SWEN2 0
#endif
// The remaining 8 bits are driven with 0 .. 15 to help track the cause of misfires
#define ADDR0 3
#define ADDR1 5
#define ADDR2 6
#define ADDR3 7
// All data bus bits of the FT240X are outputs, except COMP1 and COMP2
#define MASK (0xff & ~(1 << COMP1) & ~(1 << COMP2))
// Convert an address value 0 to 15 to an 8-bit value using ADDR0 .. ADDR3.
static uint8_t makeAddress(uint8_t addr) {
uint8_t value = 0;
if(addr & 1) {
value |= 1 << ADDR0;
}
if(addr & 2) {
value |= 1 << ADDR1;
}
if(addr & 4) {
value |= 1 << ADDR2;
}
if(addr & 8) {
value |= 1 << ADDR3;
}
return value;
}
// Extract a value form 0 to 15 from the ADDR0 .. ADDR3 bits.
static uint8_t extractAddress(uint8_t value) {
uint8_t addr = 0;
if(value & (1 << ADDR0)) {
addr |= 1;
}
if(value & (1 << ADDR1)) {
addr |= 2;
}
if(value & (1 << ADDR2)) {
addr |= 4;
}
if(value & (1 << ADDR3)) {
addr |= 8;
}
return addr;
}
// Extract the INM output from the data received. Basically, either COMP1 or COMP2
// changes, not both, so alternate reading bits from them. We get 1 INM bit of output
// per byte read. Feed bits from the INM to the health checker. Return the expected
// bits of entropy.
static uint32_t extractBytes(uint8_t *bytes, uint8_t *inBuf, bool raw) {
inmClearEntropyLevel();
//printf("New batch\n");
uint32_t i;
for(i = 0; i < BUFLEN/8; i++) {
uint32_t j;
uint8_t byte = 0;
for(j = 0; j < 8; j++) {
//printf("%x ", inBuf[i*8 + j] & ~MASK);
uint8_t val = inBuf[i*8 + j];
uint8_t evenBit = (val >> COMP2) & 1;
uint8_t oddBit = (val >> COMP1) & 1;
bool even = j & 1; // Use the even bit if j is odd
uint8_t bit = even? oddBit : evenBit;
byte = (byte << 1) | bit;
// This is a good place to feed the bit from the INM to the health checker.
uint8_t addr = extractAddress(val);
//printf("Address: %u, adding evenBit:%u oddBit:%u even:%u\n", addr, evenBit, oddBit, even);
if(!inmHealthCheckAddBit(evenBit, oddBit, even, addr)) {
fputs("Health check of Infinite Noise Multiplier failed!\n", stderr);
exit(1);
}
}
//printf("extracted byte:%x\n", byte);
bytes[i] = byte;
}
return inmGetEntropyLevel();
}
// Write the bytes to either stdout, or /dev/random. Use the lower of the measured
// entropy and the provable lower bound on average entropy.
static void outputBytes(uint8_t *bytes, uint32_t length, uint32_t entropy, bool writeDevRandom) {
if(entropy > inmExpectedEntropyPerBit*BUFLEN/INM_ACCURACY) {
entropy = (uint32_t)(inmExpectedEntropyPerBit*BUFLEN/INM_ACCURACY);
}
if(!writeDevRandom) {
if(fwrite(bytes, 1, length, outFile) != length) {
fputs("Unable to write output from Infinite Noise Multiplier\n", stderr);
exit(1);
}
fflush(outFile);
} else {
fprintf(stderr, "/dev/random not supported in Windows");
exit(1);
}
}
// Whiten the output, if requested, with a Keccak sponge. Output bytes only if the health
// checker says it's OK. Using outputMultiplier > 1 is a nice way to generate a lot more
// cryptographically secure pseudo-random data than the INM generates. This allows a user
// to generate hundreds of MiB per second if needed, for use as cryptogrpahic keys.
static void processBytes(uint8_t *keccakState, uint8_t *bytes, uint32_t entropy, bool raw,
bool writeDevRandom, uint32_t outputMultiplier) {
if(raw) {
// In raw mode, we just output raw data from the INM.
outputBytes(bytes, BUFLEN/8, entropy, writeDevRandom);
return;
}
// Note that BUFLEN has to be less than 1600 by enough to make the sponge secure,
// since outputing all 1600 bits would tell an attacker the Keccak state, allowing
// him to predict any further output, when outputMultiplier > 1, until the next call
// to processBytes. All 512 bits are absorbed before sqeezing data out to insure that
// we instantly recover (reseed) from a state compromise, which is when an attacker
// gets a snapshot of the keccak state. BUFLEN must be a multiple of 64, since
// Keccak-1600 uses 64-bit "lanes".
KeccakAbsorb(keccakState, bytes, BUFLEN/64);
uint8_t dataOut[16*8];
while(outputMultiplier > 0) {
// Write up to 1024 bits at a time.
uint32_t numLanes = 16;
if(outputMultiplier < 4) {
numLanes = outputMultiplier*4;
}
KeccakExtract(keccakState, dataOut, numLanes);
// Extract does not do a permute, so do it here.
KeccakPermutation(keccakState);
uint32_t entropyThisTime = entropy;
if(entropyThisTime > numLanes*64) {
entropyThisTime = numLanes*64;
}
outputBytes(dataOut, numLanes*8, entropyThisTime, writeDevRandom);
outputMultiplier -= numLanes/4;
entropy -= entropyThisTime;
}
}
// Initialize the Infinite Noise Multiplier USB ineterface.
static bool initializeUSB(FT_HANDLE *ftdic, char **message) {
*message = NULL;
// Open FTDI device based on FT240X vendor & product IDs
if (FT_Open(0, ftdic) != FT_OK) {
*message = "Can't find Infinite Noise Multiplier\n";
return false;
}
// Set high baud rate
if (FT_SetBaudRate(*ftdic, 30000) != FT_OK) {
*message = "Setting baud rate failed\n";
return false;
}
// Enable syncrhonous bitbang mode
if (FT_SetBitMode(*ftdic, MASK, BITMODE_SYNCBB) != FT_OK) {
*message = "Can't enable bit-bang mode\n";
return false;
}
// Just test to see that we can write and read.
uint8_t buf[64] = {0,};
uint32_t bytesWritten;
if(FT_Write(*ftdic, buf, 64, &bytesWritten) != FT_OK || bytesWritten != 64) {
*message = "USB write failed\n";
return false;
}
uint32_t bytesRead;
if(FT_Read(*ftdic, buf, 64, &bytesRead) != FT_OK || bytesRead != 64) {
*message = "USB read failed\n";
return false;
}
return true;
}
/*
// Return the differnece in the times as a double in microseconds.
static double diffTime(struct timespec *start, struct timespec *end) {
uint32_t seconds = end->tv_sec - start->tv_sec;
int32_t nanoseconds = end->tv_nsec - start->tv_nsec;
return seconds*1e6 + nanoseconds/1000.0;
}
*/
int main(int argc, char **argv)
{
FT_HANDLE ftdic;
bool raw = false;
bool debug = false;
bool writeDevRandom = false;
bool noOutput = false;
uint32_t outputMultiplier = 2;
uint32_t xArg;
// Process arguments
for(xArg = 1; xArg < (uint32_t)(argc-1); xArg++) {
if(!strcmp(argv[xArg], "--raw")) {
raw = true;
} else if(!strcmp(argv[xArg], "--debug")) {
debug = true;
} else if(!strcmp(argv[xArg], "--dev-random")) {
writeDevRandom = true;
} else if(!strcmp(argv[xArg], "--no-output")) {
noOutput = true;
} else if(!strcmp(argv[xArg], "--multiplier") && xArg+1 < (uint32_t)argc) {
xArg++;
outputMultiplier = atoi(argv[xArg]);
if(outputMultiplier == 0) {
fputs("Multiplier must be > 0\n", stderr);
return 1;
}
} else {
fputs("Usage: infnoise [options] outFile\n"
"Options are:\n"
" --debug - turn on some debug output\n"
" --dev-random - write entropy to /dev/random instead of stdout\n"
" --raw - do not whiten the output\n"
" --multiplier <value> - write 256 bits * value for each 512 bits written to\n"
" the Keccak sponge\n"
" --no-output - do not write random output data\n", stderr);
return 1;
}
}
if (argc < 2) {
fprintf(stderr, "No output file specified\n");
return 1;
}
outFile = _fsopen(argv[xArg], "w", _SH_DENYWR);
if(outFile == NULL) {
fprintf(stderr, "Unable to open file %s\n", outFile);
return 1;
}
/* if(writeDevRandom) {
inmWriteEntropyStart(BUFLEN/8, debug);
}
*/
if(!inmHealthCheckStart(PREDICTION_BITS, DESIGN_K, debug)) {
fputs("Can't intialize health checker\n", stderr);
return 1;
}
uint8_t keccakState[KeccakPermutationSizeInBytes];
KeccakInitializeState(keccakState);
char *message;
if(!initializeUSB(&ftdic, &message)) {
// Sometimes have to do it twice - not sure why
//ftdi_usb_close(&ftdic);
if(!initializeUSB(&ftdic, &message)) {
fputs(message, stderr);
return 1;
}
}
// Endless loop: set SW1EN and SW2EN alternately
uint32_t i;
uint8_t outBuf[BUFLEN], inBuf[BUFLEN];
for(i = 0; i < BUFLEN; i++) {
// Alternate Ph1 and Ph2 - maybe should have both off in between
outBuf[i] = i & 1? (1 << SWEN2) : (1 << SWEN1);
outBuf[i] |= makeAddress(i & 0xf);
}
uint64_t good = 0, bad = 0;
while(true) {
/*
struct timespec start;
clock_gettime(CLOCK_REALTIME, &start);
*/
uint32_t numBytes;
if(FT_Write(ftdic, outBuf, BUFLEN, &numBytes) != FT_OK || numBytes != BUFLEN) {
fputs("USB write failed\n", stderr);
return -1;
}
if(FT_Read(ftdic, inBuf, BUFLEN, &numBytes) != FT_OK || numBytes != BUFLEN) {
fputs("USB read failed\n", stderr);
return -1;
}
/*
struct timespec end;
clock_gettime(CLOCK_REALTIME, &end);
uint32_t us = diffTime(&start, &end);
//printf("diffTime:%u us\n", us);
*/
// if(us <= MAX_MICROSEC_FOR_SAMPLES) {
uint8_t bytes[BUFLEN/8];
uint32_t entropy = extractBytes(bytes, inBuf, raw);
if(!noOutput && inmHealthCheckOkToUseData() && inmEntropyOnTarget(entropy, BUFLEN)) {
processBytes(keccakState, bytes, entropy, raw, writeDevRandom, outputMultiplier);
}
good++;
/* } else {
bad++;
}
*/
//if(((good + bad) & 0xff) == 0) {
//printf("Good %lu, bad %lu\n", good, bad);
//}
fflush(stdout);
fflush(stderr);
}
return 0;
}