Files
infnoise/software/infnoise.c
2017-03-26 08:26:15 -07:00

306 lines
11 KiB
C

/* Driver for the Infinite Noise Multiplier USB stick */
// Required to include clock_gettime
#define _POSIX_C_SOURCE 200809L
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ftdi.h>
#include "infnoise.h"
#include "KeccakF-1600-interface.h"
// Extract the INM output from the data received. Basically, either COMP1 or COMP2
// changes, not both, so alternate reading bits from them. We get 1 INM bit of output
// per byte read. Feed bits from the INM to the health checker. Return the expected
// bits of entropy.
static uint32_t extractBytes(uint8_t *bytes, uint8_t *inBuf) {
inmClearEntropyLevel();
//printf("New batch\n");
uint32_t i;
for(i = 0u; i < BUFLEN/8u; i++) {
uint32_t j;
uint8_t byte = 0u;
for(j = 0u; j < 8u; j++) {
//printf("%x ", inBuf[i*8u + j] & ~MASK);
uint8_t val = inBuf[i*8u + j];
uint8_t evenBit = (val >> COMP2) & 1u;
uint8_t oddBit = (val >> COMP1) & 1u;
bool even = j & 1u; // Use the even bit if j is odd
uint8_t bit = even? evenBit : oddBit;
byte = (byte << 1u) | bit;
// This is a good place to feed the bit from the INM to the health checker.
//printf("Address: %u, adding evenBit:%u oddBit:%u even:%u\n", addr, evenBit, oddBit, even);
if(!inmHealthCheckAddBit(evenBit, oddBit, even)) {
fputs("Health check of Infinite Noise Multiplier failed!\n", stderr);
exit(1);
}
}
//printf("extracted byte:%x\n", byte);
bytes[i] = byte;
}
return inmGetEntropyLevel();
}
// Write the bytes to either stdout, or /dev/random.
static void outputBytes(uint8_t *bytes, uint32_t length, uint32_t entropy, bool writeDevRandom) {
if(!writeDevRandom) {
if(fwrite(bytes, 1, length, stdout) != length) {
fputs("Unable to write output from Infinite Noise Multiplier\n", stderr);
exit(1);
}
} else {
inmWaitForPoolToHaveRoom();
inmWriteEntropyToPool(bytes, length, entropy);
}
}
// Whiten the output, if requested, with a Keccak sponge. Output bytes only if the health
// checker says it's OK. Using outputMultiplier > 1 is a nice way to generate a lot more
// cryptographically secure pseudo-random data than the INM generates. If
// outputMultiplier is 0, we output only as many bits as we measure in entropy.
// This allows a user to generate hundreds of MiB per second if needed, for use
// as cryptogrpahic keys.
static uint32_t processBytes(uint8_t *keccakState, uint8_t *bytes, uint32_t entropy, bool raw,
bool writeDevRandom, uint32_t outputMultiplier) {
//Use the lower of the measured entropy and the provable lower bound on
//average entropy.
if(entropy > inmExpectedEntropyPerBit*BUFLEN/INM_ACCURACY) {
entropy = inmExpectedEntropyPerBit*BUFLEN/INM_ACCURACY;
}
if(raw) {
// In raw mode, we just output raw data from the INM.
outputBytes(bytes, BUFLEN/8u, entropy, writeDevRandom);
return BUFLEN/8u;
}
// Note that BUFLEN has to be less than 1600 by enough to make the sponge secure,
// since outputing all 1600 bits would tell an attacker the Keccak state, allowing
// him to predict any further output, when outputMultiplier > 1, until the next call
// to processBytes. All 512 bits are absorbed before sqeezing data out to insure that
// we instantly recover (reseed) from a state compromise, which is when an attacker
// gets a snapshot of the keccak state. BUFLEN must be a multiple of 64, since
// Keccak-1600 uses 64-bit "lanes".
KeccakAbsorb(keccakState, bytes, BUFLEN/64u);
uint8_t dataOut[16u*8u];
if(outputMultiplier == 0u) {
// Output all the bytes of entropy we have
KeccakExtract(keccakState, dataOut, (entropy + 63u)/64u);
outputBytes(dataOut, entropy/8u, entropy & 0x7u, writeDevRandom);
return entropy/8u;
}
// Output 256*outputMultipler bytes.
uint32_t numBits = outputMultiplier*256u;
uint32_t bytesWritten = 0u;
while(numBits > 0u) {
// Write up to 1024 bits at a time.
uint32_t bytesToWrite = 1024u/8u;
if(bytesToWrite > numBits/8u) {
bytesToWrite = numBits/8u;
}
KeccakExtract(keccakState, dataOut, bytesToWrite/8u);
uint32_t entropyThisTime = entropy;
if(entropyThisTime > 8u*bytesToWrite) {
entropyThisTime = 8u*bytesToWrite;
}
outputBytes(dataOut, bytesToWrite, entropyThisTime, writeDevRandom);
bytesWritten += bytesToWrite;
numBits -= bytesToWrite*8u;
entropy -= entropyThisTime;
if(numBits > 0u) {
KeccakPermutation(keccakState);
}
}
if(bytesWritten != outputMultiplier*(256u/8u)) {
fprintf(stderr, "Internal error outputing bytes\n");
exit(1);
}
return bytesWritten;
}
// Initialize the Infinite Noise Multiplier USB ineterface.
static bool initializeUSB(struct ftdi_context *ftdic, char **message) {
*message = NULL;
// Initialize FTDI context
ftdi_init(ftdic);
// Open FTDI device based on FT240X vendor & product IDs
if(ftdi_usb_open(ftdic, 0x0403, 0x6015) < 0) {
if(!isSuperUser()) {
*message = "Can't find Infinite Noise Multiplier. Try running as super user?\n";
} else {
*message = "Can't find Infinite Noise Multiplier\n";
}
return false;
}
// Set high baud rate
int rc = ftdi_set_baudrate(ftdic, 30000);
if(rc == -1) {
*message = "Invalid baud rate\n";
return false;
} else if(rc == -2) {
*message = "Setting baud rate failed\n";
return false;
} else if(rc == -3) {
*message = "Infinite Noise Multiplier unavailable\n";
return false;
}
// Enable syncrhonous bitbang mode
rc = ftdi_set_bitmode(ftdic, MASK, BITMODE_SYNCBB);
if(rc == -1) {
*message = "Can't enable bit-bang mode\n";
return false;
} else if(rc == -2) {
*message = "Infinite Noise Multiplier unavailable\n";
return false;
}
// Just test to see that we can write and read.
uint8_t buf[64u] = {0u,};
if(ftdi_write_data(ftdic, buf, 64) != 64) {
*message = "USB write failed\n";
return false;
}
if(ftdi_read_data(ftdic, buf, 64) != 64) {
*message = "USB read failed\n";
return false;
}
return true;
}
// Return the differnece in the times as a double in microseconds.
static double diffTime(struct timespec *start, struct timespec *end) {
uint32_t seconds = end->tv_sec - start->tv_sec;
int32_t nanoseconds = end->tv_nsec - start->tv_nsec;
return seconds*1.0e6 + nanoseconds/1000.0;
}
int main(int argc, char **argv)
{
struct ftdi_context ftdic;
bool raw = false;
bool debug = false;
bool writeDevRandom = false;
bool noOutput = false;
uint32_t outputMultiplier = 0u; // We output all the entropy when outputMultiplier == 0
int xArg;
bool multiplierAssigned = false;
bool pidFile = false;
char *pidFileName = NULL;
bool runDaemon = false;
// Process arguments
for(xArg = 1; xArg < argc; xArg++) {
if(!strcmp(argv[xArg], "--raw")) {
raw = true;
} else if(!strcmp(argv[xArg], "--debug")) {
debug = true;
} else if(!strcmp(argv[xArg], "--dev-random")) {
writeDevRandom = true;
} else if(!strcmp(argv[xArg], "--no-output")) {
noOutput = true;
} else if(!strcmp(argv[xArg], "--multiplier") && xArg+1 < argc) {
xArg++;
multiplierAssigned = true;
int tmpOutputMult = atoi(argv[xArg]);
if(tmpOutputMult < 0) {
fputs("Multiplier must be >= 0\n", stderr);
return 1;
}
outputMultiplier = tmpOutputMult;
} else if(!strcmp(argv[xArg], "--pidfile")) {
xArg++;
pidFileName = argv[xArg];
pidFile = true;
if(pidFileName == NULL || !strcmp("",pidFileName)) {
fputs("--pidfile without file name\n", stderr);
return 1;
}
} else if(!strcmp(argv[xArg], "--daemon")) {
runDaemon = true;
} else {
fputs("Usage: infnoise [options]\n"
"Options are:\n"
" --debug - turn on some debug output\n"
" --dev-random - write entropy to /dev/random instead of stdout\n"
" --raw - do not whiten the output\n"
" --multiplier <value> - write 256 bits * value for each 512 bits written to\n"
" the Keccak sponge. Default of 0 means write all the entropy.\n"
" --no-output - do not write random output data\n"
" --pidfile <file> - write process ID to file\n"
" --daemon - run in the background\n", stderr);
return 1;
}
}
if(!multiplierAssigned && writeDevRandom) {
outputMultiplier = 2u; // Don't throw away entropy when writing to /dev/random unless told to do so
}
// Optionally run in the background and optionally write a PID-file
startDaemon(runDaemon, pidFile, pidFileName);
if(writeDevRandom) {
inmWriteEntropyStart(BUFLEN/8u, debug);
}
if(!inmHealthCheckStart(PREDICTION_BITS, DESIGN_K, debug)) {
fputs("Can't intialize health checker\n", stderr);
return 1;
}
KeccakInitialize();
uint8_t keccakState[KeccakPermutationSizeInBytes];
KeccakInitializeState(keccakState);
char *message;
if(!initializeUSB(&ftdic, &message)) {
// Sometimes have to do it twice - not sure why
if(!initializeUSB(&ftdic, &message)) {
fputs(message, stderr);
return 1;
}
}
// Endless loop: set SW1EN and SW2EN alternately
uint32_t i;
uint8_t outBuf[BUFLEN], inBuf[BUFLEN];
for(i = 0u; i < BUFLEN; i++) {
// Alternate Ph1 and Ph2
outBuf[i] = i & 1? (1 << SWEN2) : (1 << SWEN1);
}
uint64_t totalBytesWritten = 0u;
while(true) {
struct timespec start;
clock_gettime(CLOCK_REALTIME, &start);
if(ftdi_write_data(&ftdic, outBuf, BUFLEN) != BUFLEN) {
fputs("USB write failed\n", stderr);
return 1;
}
if(ftdi_read_data(&ftdic, inBuf, BUFLEN) != BUFLEN) {
fputs("USB read failed\n", stderr);
return 1;
}
struct timespec end;
clock_gettime(CLOCK_REALTIME, &end);
uint32_t us = diffTime(&start, &end);
//printf("diffTime:%u us\n", us);
if(us <= MAX_MICROSEC_FOR_SAMPLES) {
uint8_t bytes[BUFLEN/8u];
uint32_t entropy = extractBytes(bytes, inBuf);
if(!noOutput && inmHealthCheckOkToUseData() && inmEntropyOnTarget(entropy, BUFLEN)) {
uint64_t prevTotalBytesWritten = totalBytesWritten;
totalBytesWritten += processBytes(keccakState, bytes, entropy, raw, writeDevRandom, outputMultiplier);
if(debug && (1u << 20u)*(totalBytesWritten/(1u << 20u)) > (1u << 20u)*(prevTotalBytesWritten/(1u << 20u))) {
fprintf(stderr, "Output %lu bytes\n", (unsigned long)totalBytesWritten);
}
}
}
}
return 0;
}