420 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			420 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Library for the Infinite Noise Multiplier USB stick */
 | |
| 
 | |
| // Required to include clock_gettime
 | |
| #define _POSIX_C_SOURCE 200809L
 | |
| 
 | |
| #define INFNOISE_VENDOR_ID 0x0403
 | |
| #define INFNOISE_PRODUCT_ID 0x6015
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <stdbool.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <unistd.h>
 | |
| #include <string.h>
 | |
| #include <time.h>
 | |
| #include <sys/types.h>
 | |
| #include <ftdi.h>
 | |
| #include "libinfnoise_private.h"
 | |
| #include "libinfnoise.h"
 | |
| #include "KeccakF-1600-interface.h"
 | |
| 
 | |
| uint8_t keccakState[KeccakPermutationSizeInBytes];
 | |
| bool initInfnoise(struct ftdi_context *ftdic,char *serial, char **message, bool keccak, bool debug) {
 | |
|     prepareOutputBuffer();
 | |
| 
 | |
|     // initialize health check
 | |
|     if (!inmHealthCheckStart(PREDICTION_BITS, DESIGN_K, debug)) {
 | |
|         *message="Can't initialize health checker";
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // initialize USB
 | |
|     if(!initializeUSB(ftdic, message, serial)) {
 | |
|         // Sometimes have to do it twice - not sure why
 | |
|         if(!initializeUSB(ftdic, message, serial)) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // initialize keccak
 | |
|     if (keccak) {
 | |
|         KeccakInitialize();
 | |
|         KeccakInitializeState(keccakState);
 | |
|     }
 | |
| 
 | |
|     // let healthcheck collect some data
 | |
|     uint32_t maxWarmupRounds = 500;
 | |
|     uint32_t warmupRounds = 0;
 | |
|     bool errorFlag = false;
 | |
|     while(!inmHealthCheckOkToUseData()) {
 | |
|         readData_private(ftdic, NULL, message, &errorFlag, false, true, 0, false);
 | |
|         warmupRounds++;
 | |
|     }
 | |
|     if (warmupRounds > maxWarmupRounds) {
 | |
|         *message = "Unable to collect enough entropy to initialize health checker.";
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| uint8_t outBuf[BUFLEN];
 | |
| void prepareOutputBuffer() {
 | |
|     uint32_t i;
 | |
| 
 | |
|     // Endless loop: set SW1EN and SW2EN alternately
 | |
|     for(i = 0u; i < BUFLEN; i++) {
 | |
|         // Alternate Ph1 and Ph2
 | |
|         outBuf[i] = i & 1?  (1 << SWEN2) : (1 << SWEN1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Extract the INM output from the data received.  Basically, either COMP1 or COMP2
 | |
| // changes, not both, so alternate reading bits from them.  We get 1 INM bit of output
 | |
| // per byte read.  Feed bits from the INM to the health checker.  Return the expected
 | |
| // bits of entropy.
 | |
| uint32_t extractBytes(uint8_t *bytes, uint8_t *inBuf, char **message, bool *errorFlag) {
 | |
|     inmClearEntropyLevel();
 | |
|     uint32_t i;
 | |
|     for(i = 0u; i < BUFLEN/8u; i++) {
 | |
|         uint32_t j;
 | |
|         uint8_t byte = 0u;
 | |
|         for(j = 0u; j < 8u; j++) {
 | |
|             uint8_t val = inBuf[i*8u + j];
 | |
|             uint8_t evenBit = (val >> COMP2) & 1u;
 | |
|             uint8_t oddBit = (val >> COMP1) & 1u;
 | |
|             bool even = j & 1u; // Use the even bit if j is odd
 | |
|             uint8_t bit = even? evenBit : oddBit;
 | |
|             byte = (byte << 1u) | bit;
 | |
| 
 | |
|             // This is a good place to feed the bit from the INM to the health checker.
 | |
|             if(!inmHealthCheckAddBit(evenBit, oddBit, even)) {
 | |
|                 *message = "Health check of Infinite Noise Multiplier failed!";
 | |
| 		*errorFlag = true;
 | |
|                 return 0;
 | |
|             }
 | |
|         }
 | |
|         bytes[i] = byte;
 | |
|     }
 | |
|     return inmGetEntropyLevel();
 | |
| }
 | |
| 
 | |
| // Return the difference in the times as a double in microseconds.
 | |
| double diffTime(struct timespec *start, struct timespec *end) {
 | |
|     uint32_t seconds = end->tv_sec - start->tv_sec;
 | |
|     int32_t nanoseconds = end->tv_nsec - start->tv_nsec;
 | |
|     return seconds*1.0e6 + nanoseconds/1000.0;
 | |
| }
 | |
| 
 | |
| // Write the bytes to either stdout, or /dev/random.
 | |
| bool outputBytes(uint8_t *bytes,  uint32_t length, uint32_t entropy, bool writeDevRandom, char **message) {
 | |
|     if(!writeDevRandom) {
 | |
|         if(fwrite(bytes, 1, length, stdout) != length) {
 | |
|             *message = "Unable to write output from Infinite Noise Multiplier";
 | |
|             return false;
 | |
|         }
 | |
|     } else {
 | |
|         inmWaitForPoolToHaveRoom();
 | |
|         inmWriteEntropyToPool(bytes, length, entropy);
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool isSuperUser(void) {
 | |
|         return (geteuid() == 0);
 | |
| }
 | |
| 
 | |
| // Whiten the output, if requested, with a Keccak sponge. Output bytes only if the health
 | |
| // checker says it's OK.  Using outputMultiplier > 1 is a nice way to generate a lot more
 | |
| // cryptographically secure pseudo-random data than the INM generates.  If
 | |
| // outputMultiplier is 0, we output only as many bits as we measure in entropy.
 | |
| // This allows a user to generate hundreds of MiB per second if needed, for use
 | |
| // as cryptographic keys.
 | |
| uint32_t processBytes(uint8_t *bytes, uint8_t *result, uint32_t entropy,
 | |
|         bool raw, bool writeDevRandom, uint32_t outputMultiplier, bool noOutput,
 | |
|         char **message, bool *errorFlag) {
 | |
|     //Use the lower of the measured entropy and the provable lower bound on
 | |
|     //average entropy.
 | |
|     if(entropy > inmExpectedEntropyPerBit*BUFLEN/INM_ACCURACY) {
 | |
|         entropy = inmExpectedEntropyPerBit*BUFLEN/INM_ACCURACY;
 | |
|     }
 | |
|     if(raw) {
 | |
|         // In raw mode, we just output raw data from the INM.
 | |
|         if (!noOutput) {
 | |
|             if (!outputBytes(bytes, BUFLEN/8u, entropy, writeDevRandom, message)) {
 | |
| 		*errorFlag = true;
 | |
|                 return 0; // write failed
 | |
|             }
 | |
|         } else {
 | |
| 	    if (result != NULL) {
 | |
|                 memcpy(result, bytes, BUFLEN/8u * sizeof(uint8_t));
 | |
|             }
 | |
| 	}
 | |
|         return BUFLEN/8u;
 | |
|     }
 | |
| 
 | |
|     // Note that BUFLEN has to be less than 1600 by enough to make the sponge secure,
 | |
|     // since outputting all 1600 bits would tell an attacker the Keccak state, allowing
 | |
|     // him to predict any further output, when outputMultiplier > 1, until the next call
 | |
|     // to processBytes.  All 512 bits are absorbed before squeezing data out to ensure that
 | |
|     // we instantly recover (reseed) from a state compromise, which is when an attacker
 | |
|     // gets a snapshot of the keccak state.  BUFLEN must be a multiple of 64, since
 | |
|     // Keccak-1600 uses 64-bit "lanes".
 | |
|     KeccakAbsorb(keccakState, bytes, BUFLEN/64u);
 | |
|     uint8_t dataOut[16u*8u];
 | |
|     if(outputMultiplier == 0u) {
 | |
|         // Output all the bytes of entropy we have
 | |
|         KeccakExtract(keccakState, dataOut, (entropy + 63u)/64u);
 | |
| 	if (!noOutput) {
 | |
| 	    if (!outputBytes(dataOut, entropy/8u, entropy & 0x7u, writeDevRandom, message)) {
 | |
|                 *errorFlag = true;
 | |
|                 return 0;
 | |
|             }
 | |
| 	} else {
 | |
| 	    if (result != NULL) {
 | |
|                 memcpy(result, dataOut, entropy/8u * sizeof(uint8_t));
 | |
|             }
 | |
| 	}
 | |
|         return entropy/8u;
 | |
|     }
 | |
| 
 | |
|     // Output 256*outputMultipler bits.
 | |
|     uint32_t numBits = outputMultiplier*256u;
 | |
|     uint32_t bytesWritten = 0u;
 | |
| 
 | |
|     while(numBits > 0u) {
 | |
|         // Write up to 1024 bits at a time.
 | |
|         uint32_t bytesToWrite = 1024u/8u;
 | |
|         if(bytesToWrite > numBits/8u) {
 | |
|             bytesToWrite = numBits/8u;
 | |
|         }
 | |
|         KeccakExtract(keccakState, dataOut, bytesToWrite/8u);
 | |
|         uint32_t entropyThisTime = entropy;
 | |
|         if(entropyThisTime > 8u*bytesToWrite) {
 | |
|             entropyThisTime = 8u*bytesToWrite;
 | |
|         }
 | |
| 	if (!noOutput) {
 | |
|             if (!outputBytes(dataOut, bytesToWrite, entropyThisTime, writeDevRandom, message)) {
 | |
|                 *errorFlag = true;
 | |
|                 return 0;
 | |
|             }
 | |
| 	} else {
 | |
|             //memcpy(result + bytesWritten, dataOut, bytesToWrite * sizeof(uint8_t)); //doesn't work?
 | |
|             // alternative: loop through dataOut and append array elements to result..
 | |
| 	    if (result != NULL) {
 | |
|                 for (uint32_t i =0; i < bytesToWrite; i++ ) {
 | |
|                     result[bytesWritten + i] = dataOut[i];
 | |
|                 }
 | |
|             }
 | |
| 	}
 | |
|         bytesWritten += bytesToWrite;
 | |
|         numBits -= bytesToWrite*8u;
 | |
|         entropy -= entropyThisTime;
 | |
|         if(numBits > 0u) {
 | |
|             KeccakPermutation(keccakState);
 | |
|         }
 | |
|     }
 | |
|     if(bytesWritten != outputMultiplier*(256u/8u)) {
 | |
|         *message = "Internal error outputing bytes";
 | |
| 	*errorFlag = true;
 | |
|         return 0;
 | |
|     }
 | |
|     return bytesWritten;
 | |
| }
 | |
| 
 | |
| // Return a list of all infinite noise multipliers found.
 | |
| bool listUSBDevices(struct ftdi_context *ftdic, char** message) {
 | |
|     ftdi_init(ftdic);
 | |
| 
 | |
|     struct ftdi_device_list *devlist;
 | |
|     struct ftdi_device_list *curdev;
 | |
|     char manufacturer[128], description[128], serial[128];
 | |
|     int i=0;
 | |
| 
 | |
|     // search devices
 | |
|     int rc = ftdi_usb_find_all(ftdic, &devlist, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID);
 | |
| 
 | |
|     if (rc < 0) {
 | |
|         if (!isSuperUser()) {
 | |
|             *message = "Can't find Infinite Noise Multiplier.  Try running as super user?";
 | |
|         } else {
 | |
|             *message = "Can't find Infinite Noise Multiplier";
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (curdev = devlist; curdev != NULL; i++) {
 | |
|         //printf("Device: %d, ", i);
 | |
|         rc = ftdi_usb_get_strings(ftdic, curdev->dev, manufacturer, 128, description, 128, serial, 128);
 | |
|         if (rc < 0) {
 | |
|             if (!isSuperUser()) {
 | |
|                 *message = "Can't find Infinite Noise Multiplier.  Try running as super user?";
 | |
| 		return false;
 | |
|             }
 | |
|             //*message = "ftdi_usb_get_strings failed: %d (%s)\n", rc, ftdi_get_error_string(ftdic));
 | |
| 	    return false;
 | |
|        	}
 | |
| 
 | |
| 	// print to stdout
 | |
|         printf("Manufacturer: %s, Description: %s, Serial: %s", manufacturer, description, serial);
 | |
|        	curdev = curdev->next;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // Initialize the Infinite Noise Multiplier USB interface.
 | |
| bool initializeUSB(struct ftdi_context *ftdic, char **message, char *serial) {
 | |
|     ftdi_init(ftdic);
 | |
|     struct ftdi_device_list *devlist;
 | |
| 
 | |
|     // search devices
 | |
|     int rc = 0;
 | |
|     if ((rc = ftdi_usb_find_all(ftdic, &devlist, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID)) < 0) {
 | |
|         *message = "Can't find Infinite Noise Multiplier";
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // only one found, or no serial given
 | |
|     if (rc >= 0) {
 | |
| 	if (serial == NULL) {
 | |
|             // more than one found AND no serial given
 | |
|             if (rc >= 2) {
 | |
| 		*message = "Multiple Infnoise TRNGs found and serial not specified, using the first one!";
 | |
|             }
 | |
|             if (ftdi_usb_open(ftdic, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID) < 0) {
 | |
|                 if(!isSuperUser()) {
 | |
|                     *message = "Can't open Infinite Noise Multiplier. Try running as super user?";
 | |
|                 } else {
 | |
|                     *message = "Can't open Infinite Noise Multiplier";
 | |
|                 }
 | |
|                 return false;
 | |
| 	    }
 | |
|         } else {
 | |
|             // serial specified
 | |
|             rc = ftdi_usb_open_desc(ftdic, INFNOISE_VENDOR_ID, INFNOISE_PRODUCT_ID, NULL, serial);
 | |
|             if (rc < 0) {
 | |
|                 if(!isSuperUser()) {
 | |
|                     *message = "Can't find Infinite Noise Multiplier. Try running as super user?";
 | |
|                 } else {
 | |
|                     *message = "Can't find Infinite Noise Multiplier with given serial";
 | |
|                 }
 | |
|                 return false;
 | |
| 	    }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Set high baud rate
 | |
|     rc = ftdi_set_baudrate(ftdic, 30000);
 | |
|     if(rc == -1) {
 | |
|         *message = "Invalid baud rate";
 | |
|         return false;
 | |
|     } else if(rc == -2) {
 | |
|         *message = "Setting baud rate failed";
 | |
|         return false;
 | |
|     } else if(rc == -3) {
 | |
|         *message = "Infinite Noise Multiplier unavailable";
 | |
|         return false;
 | |
|     }
 | |
|     rc = ftdi_set_bitmode(ftdic, MASK, BITMODE_SYNCBB);
 | |
|     if(rc == -1) {
 | |
|         *message = "Can't enable bit-bang mode";
 | |
|         return false;
 | |
|     } else if(rc == -2) {
 | |
|         *message = "Infinite Noise Multiplier unavailable\n";
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Just test to see that we can write and read.
 | |
|     uint8_t buf[64u] = {0u,};
 | |
|     if(ftdi_write_data(ftdic, buf, 64) != 64) {
 | |
|         *message = "USB write failed";
 | |
|         return false;
 | |
|     }
 | |
|     if(ftdi_read_data(ftdic, buf, 64) != 64) {
 | |
|         *message = "USB read failed";
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| uint32_t readRawData(struct ftdi_context *ftdic, uint8_t *result, char **message, bool *errorFlag) {
 | |
|     return readData_private(ftdic, result, message, errorFlag, false, true, 0, false);
 | |
| }
 | |
| 
 | |
| uint32_t readData(struct ftdi_context *ftdic, uint8_t *result, char **message, bool *errorFlag, uint32_t outputMultiplier) {
 | |
|     return readData_private(ftdic, result, message, errorFlag, false, false, outputMultiplier, false);
 | |
| }
 | |
| 
 | |
| uint32_t readData_private(struct ftdi_context *ftdic, uint8_t *result, char **message, bool *errorFlag,
 | |
|                         bool noOutput, bool raw, uint32_t outputMultiplier, bool devRandom) {
 | |
|     uint8_t inBuf[BUFLEN];
 | |
|     struct timespec start;
 | |
|     clock_gettime(CLOCK_REALTIME, &start);
 | |
| 
 | |
|     // write clock signal
 | |
|     if(ftdi_write_data(ftdic, outBuf, BUFLEN) != BUFLEN) {
 | |
|         *message = "USB write failed";
 | |
|         *errorFlag = true;
 | |
|     }
 | |
| 
 | |
|     // and read 512 byte from the internal buffer (in synchronous bitbang mode)
 | |
|     if(ftdi_read_data(ftdic, inBuf, BUFLEN) != BUFLEN) {
 | |
|         *message = "USB read failed";
 | |
|         *errorFlag = true;
 | |
|     }
 | |
| 
 | |
|     struct timespec end;
 | |
|     clock_gettime(CLOCK_REALTIME, &end);
 | |
|     uint32_t us = diffTime(&start, &end);
 | |
|     if(us <= MAX_MICROSEC_FOR_SAMPLES) {
 | |
|         uint8_t bytes[BUFLEN/8u];
 | |
|         uint32_t entropy = extractBytes(bytes, inBuf, message, errorFlag);
 | |
| 
 | |
| 	// call health check and process bytes if OK
 | |
|         if (inmHealthCheckOkToUseData() && inmEntropyOnTarget(entropy, BUFLEN)) {
 | |
|             uint32_t byteswritten = processBytes(bytes, result, entropy, raw, devRandom, outputMultiplier, noOutput, message, errorFlag);
 | |
| 	    return byteswritten;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #ifdef LIB_EXAMPLE_PROGRAM
 | |
| // example use of libinfnoise - with keccak
 | |
| int main() {
 | |
|     char *serial=NULL; // use any device, can be set to a specific serial
 | |
| 
 | |
|     // initialize USB
 | |
|     struct ftdi_context ftdic;
 | |
|     initInfnoise(&ftdic, serial);
 | |
| 
 | |
|     // parameters for readData(..):
 | |
|     bool rawOutput = true;
 | |
|     uint32_t multiplier = 10u;
 | |
| 
 | |
|     // calculate output size based on the parameters:
 | |
|     // when using the multiplier, we need a result array of 32*MULTIPLIER - otherwise 64(BUFLEN/8) bytes
 | |
|     uint32_t resultSize;
 | |
|     if (multiplier == 0 || rawOutput == true) {
 | |
|         resultSize = BUFLEN/8u;
 | |
|     } else {
 | |
|         resultSize = multiplier*32u;
 | |
|     }
 | |
| 
 | |
|     uint64_t totalBytesWritten = 0u;
 | |
| 
 | |
|     // read and print in a loop
 | |
|     while (totalBytesWritten < 100000) {
 | |
|         uint8_t result[resultSize];
 | |
|         uint64_t bytesWritten = 0u;
 | |
|         bytesWritten = readData(&ftdic, keccakState, result, multiplier);
 | |
| 
 | |
| 	// check for -1, indicating an error
 | |
|         totalBytesWritten += bytesWritten;
 | |
| 
 | |
| 	// make sure to only read as many bytes as readData returned. Only those have passed the health check in this round (usually all)
 | |
|         fwrite(result, 1, bytesWritten, stdout);
 | |
|     }
 | |
| }
 | |
| #endif
 |