202 lines
5.3 KiB
Verilog
202 lines
5.3 KiB
Verilog
/**
|
|
* Step 7: Creating a RISC-V processor
|
|
* Assembly
|
|
* Usage:
|
|
* iverilog step1.v
|
|
* vvp a.out
|
|
* to exit: <ctrl><c> then finish
|
|
*/
|
|
|
|
`default_nettype none
|
|
|
|
module RiscV (
|
|
input clock,
|
|
output [4:0] leds
|
|
);
|
|
assign leds = 0; // we will use the LEDs later
|
|
|
|
reg [31:0] ROM [0:255];
|
|
reg [31:0] PC; // program counter
|
|
reg [31:0] instr; // current instruction
|
|
|
|
|
|
`include "riscv_assembly.v"
|
|
|
|
// Initial value of program counter and instruction
|
|
// register.
|
|
initial begin
|
|
PC = 0;
|
|
instr = NOP_CODEOP;
|
|
end
|
|
|
|
// ROM initialization, using our poor's men assembly
|
|
// in "risc_assembly.v".
|
|
initial begin
|
|
ADD(x0,x0,x0);
|
|
ADD(x1,x0,x0);
|
|
ADDI(x1,x1,1);
|
|
ADDI(x1,x1,1);
|
|
ADDI(x1,x1,1);
|
|
ADDI(x1,x1,1);
|
|
ADD(x2,x1,x0);
|
|
ADD(x3,x1,x2);
|
|
SRLI(x3,x3,3);
|
|
SLLI(x3,x3,31);
|
|
SRAI(x3,x3,5);
|
|
EBREAK();
|
|
end
|
|
|
|
|
|
// See the table P. 105 in RISC-V manual
|
|
// The 10 RISC-V instructions
|
|
// Funny: what we do here is in fact just the reverse
|
|
// of what's done in riscv_assembly.v !
|
|
|
|
wire isALUreg = (instr[6:0] == 7'b0110011); // rd <- rs1 OP rs2
|
|
wire isALUimm = (instr[6:0] == 7'b0010011); // rd <- rs1 OP Iimm
|
|
wire isBranch = (instr[6:0] == 7'b1100011); // if(rs1 OP rs2) PC<-PC+Bimm
|
|
wire isJALR = (instr[6:0] == 7'b1100111); // rd <- PC+4; PC<-rs1+Iimm
|
|
wire isJAL = (instr[6:0] == 7'b1101111); // rd <- PC+4; PC<-PC+Jimm
|
|
wire isAUIPC = (instr[6:0] == 7'b0010111); // rd <- PC + Uimm
|
|
wire isLUI = (instr[6:0] == 7'b0110111); // rd <- Uimm
|
|
wire isLoad = (instr[6:0] == 7'b0000011); // rd <- mem[rs1+Iimm]
|
|
wire isStore = (instr[6:0] == 7'b0100011); // mem[rs1+Simm] <- rs2
|
|
wire isSYSTEM = (instr[6:0] == 7'b1110011); // special
|
|
|
|
// The 5 immediate formats
|
|
wire [31:0] Uimm={ instr[31], instr[30:12], {12{1'b0}}};
|
|
wire [31:0] Iimm={{21{instr[31]}}, instr[30:20]};
|
|
wire [31:0] Simm={{21{instr[31]}}, instr[30:25],instr[11:7]};
|
|
wire [31:0] Bimm={{20{instr[31]}}, instr[7],instr[30:25],instr[11:8],1'b0};
|
|
wire [31:0] Jimm={{12{instr[31]}}, instr[19:12],instr[20],instr[30:21],1'b0};
|
|
|
|
// Source and destination registers
|
|
wire [4:0] rs1Id = instr[19:15];
|
|
wire [4:0] rs2Id = instr[24:20];
|
|
wire [4:0] rdId = instr[11:7];
|
|
|
|
// function codes
|
|
wire [2:0] funct3 = instr[14:12];
|
|
wire [6:0] funct7 = instr[31:25];
|
|
|
|
// The registers bank
|
|
reg [31:0] RegisterBank [0:31];
|
|
reg [31:0] rs1; // value of source
|
|
reg [31:0] rs2; // registers.
|
|
wire [31:0] writeBackData; // data to be written to rd
|
|
wire writeBackEn; // asserted if data should be written to rd
|
|
|
|
integer i;
|
|
initial begin
|
|
for(i=0; i<32; ++i) begin
|
|
RegisterBank[i] = 0;
|
|
end
|
|
end
|
|
|
|
// The ALU
|
|
wire [31:0] aluIn1 = rs1;
|
|
wire [31:0] aluIn2 = isALUreg ? rs2 : Iimm;
|
|
reg [31:0] aluOut;
|
|
wire [4:0] shamt = isALUreg ? rs2[4:0] : instr[24:20]; // shift amount
|
|
|
|
always @(*) begin
|
|
case(funct3)
|
|
3'b000: aluOut = (funct7[5] & instr[5]) ? (aluIn1 - aluIn2) : (aluIn1 + aluIn2);
|
|
3'b001: aluOut = aluIn1 << shamt;
|
|
3'b010: aluOut = ($signed(aluIn1) < $signed(aluIn2));
|
|
3'b011: aluOut = (aluIn1 < aluIn2);
|
|
3'b100: aluOut = (aluIn1 ^ aluIn2);
|
|
3'b101: aluOut = funct7[5]? ($signed(aluIn1) >>> shamt) : ($signed(aluIn1) >> shamt);
|
|
3'b110: aluOut = (aluIn1 | aluIn2);
|
|
3'b111: aluOut = (aluIn1 & aluIn2);
|
|
endcase
|
|
end
|
|
|
|
// ADD/SUB/ADDI:
|
|
// funct7[5] is 1 for SUB and 0 for ADD. We need also to test instr[5]
|
|
// to make the difference with ADDI
|
|
//
|
|
// SRLI/SRAI/SRL/SRA:
|
|
// funct7[5] is 1 for arithmetic shift (SRA/SRAI) and 0 for logical shift (SRL/SRLI)
|
|
|
|
// The state machine
|
|
localparam FETCH_INSTR = 0;
|
|
localparam FETCH_REGS = 1;
|
|
localparam EXECUTE = 2;
|
|
reg [1:0] state;
|
|
|
|
// register write back
|
|
assign writeBackData = aluOut;
|
|
assign writeBackEn = (state == EXECUTE && (isALUreg || isALUimm));
|
|
|
|
initial begin
|
|
state = FETCH_INSTR;
|
|
end
|
|
|
|
always @(posedge clock) begin
|
|
case(state)
|
|
FETCH_INSTR: begin
|
|
instr <= ROM[PC];
|
|
state <= FETCH_REGS;
|
|
end
|
|
FETCH_REGS: begin
|
|
rs1 <= RegisterBank[rs1Id];
|
|
rs2 <= RegisterBank[rs2Id];
|
|
state <= EXECUTE;
|
|
end
|
|
EXECUTE: begin
|
|
case (1'b1)
|
|
isALUreg: $display(
|
|
"ALUreg rd=%d rs1=%d rs2=%d funct3=%b",
|
|
rdId, rs1Id, rs2Id, funct3
|
|
);
|
|
isALUimm: $display(
|
|
"ALUimm rd=%d rs1=%d imm=%0d funct3=%b",
|
|
rdId, rs1Id, Iimm, funct3
|
|
);
|
|
isBranch: $display("BRANCH");
|
|
isJAL: $display("JAL");
|
|
isJALR: $display("JALR");
|
|
isAUIPC: $display("AUIPC");
|
|
isLUI: $display("LUI");
|
|
isLoad: $display("LOAD");
|
|
isStore: $display("STORE");
|
|
isSYSTEM: $display("SYSTEM");
|
|
endcase
|
|
if(isSYSTEM) begin
|
|
$finish();
|
|
end
|
|
PC <= PC + 1;
|
|
state <= FETCH_INSTR;
|
|
end
|
|
endcase
|
|
|
|
if(writeBackEn && rdId != 0) begin
|
|
RegisterBank[rdId] <= writeBackData;
|
|
$display("x%0d <= %b",rdId,writeBackData);
|
|
end
|
|
|
|
|
|
end
|
|
endmodule
|
|
|
|
module bench();
|
|
reg clock;
|
|
wire [4:0] leds;
|
|
|
|
RiscV uut(
|
|
.clock(clock),
|
|
.leds(leds)
|
|
);
|
|
|
|
initial begin
|
|
clock = 0;
|
|
forever begin
|
|
#1 clock = ~clock;
|
|
// $display("LEDS=%b",leds); // we will use the LEDs later
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|