Files
learn-fpga/FemtoRV/RTL/PROCESSOR/femtorv32_testdrive.v
Bruno Levy a3bf451723 testdrive-RV32M, simplified a bit DIV/REM implementation, gained a
little bit: now validates at 90MHz and works at 115 MHz
2021-09-04 17:33:39 +02:00

459 lines
17 KiB
Verilog

/******************************************************************************/
// TestDrive: morphing tachyon into a RV32IMF core, trying to
// preserve maxfreq at each step.
// Step 0: Tachyon valid. fmax: 115-120 MHz exp. fmax: 135-140 MHz
// Step 1: Barrel shft valid. fmax: 110-115 MHz exp. fmax: 130-135 MHz
// Step 2: RV32M valid. fmax: 90 MHz exp. fmax: 115 MHz (electron: 70-80)
// DIV is bottleneck (fmax 90) then MUL (105)
// Let's try the division from projectF
//
/******************************************************************************/
// Firmware generation flags for this processor
`define NRV_ARCH "rv32im"
`define NRV_ABI "ilp32"
`define NRV_OPTIMIZE "-O3"
module FemtoRV32(
input clk,
output [31:0] mem_addr, // address bus
output [31:0] mem_wdata, // data to be written
output [3:0] mem_wmask, // write mask for the 4 bytes of each word
input [31:0] mem_rdata, // input lines for both data and instr
output mem_rstrb, // active to initiate memory read (used by IO)
input mem_rbusy, // asserted if memory is busy reading value
input mem_wbusy, // asserted if memory is busy writing value
input reset // set to 0 to reset the processor
);
parameter RESET_ADDR = 32'h00000000;
parameter ADDR_WIDTH = 24;
localparam ADDR_PAD = {(32-ADDR_WIDTH){1'b0}}; // 32-bits padding for addrs
// Flip a 32 bit word. Used by the shifter (a single shifter for
// left and right shifts, saves silicium !)
function [31:0] flip32;
input [31:0] x;
flip32 = {x[ 0], x[ 1], x[ 2], x[ 3], x[ 4], x[ 5], x[ 6], x[ 7],
x[ 8], x[ 9], x[10], x[11], x[12], x[13], x[14], x[15],
x[16], x[17], x[18], x[19], x[20], x[21], x[22], x[23],
x[24], x[25], x[26], x[27], x[28], x[29], x[30], x[31]};
endfunction
/***************************************************************************/
// Instruction decoding.
/***************************************************************************/
// Extracts rd,rs1,rs2,funct3,imm and opcode from instruction.
// Reference: Table page 104 of:
// https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
// The destination register
wire [4:0] rdId = instr[11:7];
// The ALU function, decoded in 1-hot form (doing so reduces LUT count)
// It is used as follows: funct3Is[val] <=> funct3 == val
(* onehot *)
wire [7:0] funct3Is = 8'b00000001 << instr[14:12];
// The five immediate formats, see RiscV reference (link above), Fig. 2.4 p. 12
wire [31:0] Uimm = { instr[31], instr[30:12], {12{1'b0}}};
wire [31:0] Iimm = {{21{instr[31]}}, instr[30:20]};
/* verilator lint_off UNUSED */ // MSBs of SBJimms are not used by addr adder.
wire [31:0] Simm = {{21{instr[31]}}, instr[30:25],instr[11:7]};
wire [31:0] Bimm = {{20{instr[31]}}, instr[7],instr[30:25],instr[11:8],1'b0};
wire [31:0] Jimm = {{12{instr[31]}}, instr[19:12],instr[20],instr[30:21],1'b0};
/* verilator lint_on UNUSED */
// Base RISC-V (RV32I) has only 10 different instructions !
wire isLoad = (instr[6:2] == 5'b00000); // rd <- mem[rs1+Iimm]
wire isALUimm = (instr[6:2] == 5'b00100); // rd <- rs1 OP Iimm
wire isAUIPC = (instr[6:2] == 5'b00101); // rd <- PC + Uimm
wire isStore = (instr[6:2] == 5'b01000); // mem[rs1+Simm] <- rs2
wire isALUreg = (instr[6:2] == 5'b01100); // rd <- rs1 OP rs2
wire isLUI = (instr[6:2] == 5'b01101); // rd <- Uimm
wire isBranch = (instr[6:2] == 5'b11000); // if(rs1 OP rs2) PC<-PC+Bimm
wire isJALR = (instr[6:2] == 5'b11001); // rd <- PC+4; PC<-rs1+Iimm
wire isJAL = (instr[6:2] == 5'b11011); // rd <- PC+4; PC<-PC+Jimm
wire isSYSTEM = (instr[6:2] == 5'b11100); // rd <- cycles
wire isALU = isALUimm | isALUreg;
/***************************************************************************/
// The register file.
/***************************************************************************/
reg [31:0] rs1;
reg [31:0] rs2;
reg [31:0] registerFile [31:0];
always @(posedge clk) begin
if (writeBack)
if (rdId != 0)
registerFile[rdId] <= writeBackData;
end
/***************************************************************************/
// The ALU. Does operations and tests combinatorially, except shifts.
/***************************************************************************/
// First ALU source, always rs1
wire [31:0] aluIn1 = rs1;
// Second ALU source, depends on opcode:
// ALUreg, Branch: rs2
// ALUimm, Load, JALR: Iimm
wire [31:0] aluIn2 = isALUreg | isBranch ? rs2 : Iimm;
wire aluWr; // ALU write strobe
// The adder is used by both arithmetic instructions and JALR.
wire [31:0] aluPlus = aluIn1 + aluIn2;
// Use a single 33 bits subtract to do subtraction and all comparisons
// (trick borrowed from swapforth/J1)
wire [32:0] aluMinus = {1'b1, ~aluIn2} + {1'b0,aluIn1} + 33'b1;
wire LT = (aluIn1[31] ^ aluIn2[31]) ? aluIn1[31] : aluMinus[32];
wire LTU = aluMinus[32];
wire EQ = (aluMinus[31:0] == 0);
/***************************************************************************/
// Use the same shifter both for left and right shifts by
// applying bit reversal
wire [31:0] shifter_in = funct3Is[1] ? flip32(aluIn1) : aluIn1;
/* verilator lint_off WIDTH */
wire [31:0] shifter =
$signed({instr[30] & aluIn1[31], shifter_in}) >>> aluIn2[4:0];
/* verilator lint_on WIDTH */
wire [31:0] leftshift = flip32(shifter);
/***************************************************************************/
// funct3: 1->MULH, 2->MULHSU 3->MULHU
wire isMULH = funct3Is[1];
wire isMULHSU = funct3Is[2];
wire sign1 = aluIn1[31] & isMULH;
wire sign2 = aluIn2[31] & (isMULH | isMULHSU);
wire signed [32:0] signed1 = {sign1, aluIn1};
wire signed [32:0] signed2 = {sign2, aluIn2};
wire signed [63:0] multiply = signed1 * signed2;
/***************************************************************************/
// Notes:
// - instr[30] is 1 for SUB and 0 for ADD
// - for SUB, need to test also instr[5] to discriminate ADDI:
// (1 for ADD/SUB, 0 for ADDI, and Iimm used by ADDI overlaps bit 30 !)
// - instr[30] is 1 for SRA (do sign extension) and 0 for SRL
wire [31:0] alu_base =
(funct3Is[0] ? instr[30] & instr[5] ? aluMinus[31:0] : aluPlus : 32'b0) |
(funct3Is[1] ? leftshift : 32'b0) |
(funct3Is[2] ? {31'b0, LT} : 32'b0) |
(funct3Is[3] ? {31'b0, LTU} : 32'b0) |
(funct3Is[4] ? aluIn1 ^ aluIn2 : 32'b0) |
(funct3Is[5] ? shifter : 32'b0) |
(funct3Is[6] ? aluIn1 | aluIn2 : 32'b0) |
(funct3Is[7] ? aluIn1 & aluIn2 : 32'b0) ;
// funct3: 0->MUL 1->MULH 2->MULHSU 3->MULHU
// 4->DIV 5->DIVU 6->REM 7->REMU
wire [31:0] alu_mul = funct3Is[0] ? multiply[31: 0] // 0:MUL
: multiply[63:32] ; // 1:MULH, 2:MULHSU, 3:MULHU
wire [31:0] alu_div = instr[13] ? (div_sign ? -dividend : dividend)
: (div_sign ? -quotient : quotient);
wire aluBusy = |quotient_msk; // ALU is busy if division is in progress.
reg [31:0] aluOut;
wire funcM = instr[25];
wire isDivide = instr[14];
always @(posedge clk) begin
aluOut <= (isALUreg & funcM) ? (isDivide ? alu_div : alu_mul) : alu_base;
end
/***************************************************************************/
// Implementation of DIV/REM instructions, highly inspired by PicoRV32
wire div_sign = ~instr[12] & (instr[13] ? aluIn1[31] :
(aluIn1[31] != aluIn2[31]) & |aluIn2);
reg [31:0] dividend;
reg [62:0] divisor;
reg [31:0] quotient;
reg [32:0] quotient_msk;
always @(posedge clk) begin
if (aluWr) begin
dividend <= ~instr[12] & aluIn1[31] ? -aluIn1 : aluIn1;
divisor <= {(~instr[12] & aluIn2[31] ? -aluIn2 : aluIn2), 31'b0};
quotient <= 0;
quotient_msk[32] <= isALUreg & funcM & isDivide;
end else begin
divisor <= divisor >> 1;
quotient_msk <= quotient_msk >> 1;
if(divisor <= {31'b0, dividend}) begin
quotient <= quotient | quotient_msk[32:1];
dividend <= dividend - divisor[31:0];
end
end
end
/***************************************************************************/
// The predicate for conditional branches.
/***************************************************************************/
wire predicate_ =
funct3Is[0] & EQ | // BEQ
funct3Is[1] & !EQ | // BNE
funct3Is[4] & LT | // BLT
funct3Is[5] & !LT | // BGE
funct3Is[6] & LTU | // BLTU
funct3Is[7] & !LTU ; // BGEU
reg predicate;
/***************************************************************************/
// Program counter and branch target computation.
/***************************************************************************/
reg [ADDR_WIDTH-1:0] PC; // The program counter.
reg [31:2] instr; // Latched instruction. Note that bits 0 and 1 are
// ignored (not used in RV32I base instr set).
wire [ADDR_WIDTH-1:0] PCplus4 = PC + 4;
// An adder used to compute branch address, JAL address and AUIPC.
reg [ADDR_WIDTH-1:0] PCplusImm;
// A separate adder to compute the destination of load/store.
reg [ADDR_WIDTH-1:0] loadstore_addr;
assign mem_addr = {ADDR_PAD,
state[WAIT_INSTR_bit] | state[FETCH_INSTR_bit] ?
PC : loadstore_addr
};
/***************************************************************************/
// The value written back to the register file.
/***************************************************************************/
wire [31:0] writeBackData =
/* verilator lint_off WIDTH */
(isSYSTEM ? cycles : 32'b0) | // SYSTEM
/* verilator lint_on WIDTH */
(isLUI ? Uimm : 32'b0) | // LUI
(isALU ? aluOut : 32'b0) | // ALUreg, ALUimm
(isAUIPC ? {ADDR_PAD,PCplusImm} : 32'b0) | // AUIPC
(isJALR | isJAL ? {ADDR_PAD,PCplus4 } : 32'b0) | // JAL, JALR
(isLoad ? LOAD_data : 32'b0); // Load
/***************************************************************************/
// LOAD/STORE
/***************************************************************************/
// All memory accesses are aligned on 32 bits boundary. For this
// reason, we need some circuitry that does unaligned halfword
// and byte load/store, based on:
// - funct3[1:0]: 00->byte 01->halfword 10->word
// - mem_addr[1:0]: indicates which byte/halfword is accessed
wire mem_byteAccess = instr[13:12] == 2'b00; // funct3[1:0] == 2'b00;
wire mem_halfwordAccess = instr[13:12] == 2'b01; // funct3[1:0] == 2'b01;
// LOAD, in addition to funct3[1:0], LOAD depends on:
// - funct3[2] (instr[14]): 0->do sign expansion 1->no sign expansion
wire LOAD_sign =
!instr[14] & (mem_byteAccess ? LOAD_byte[7] : LOAD_halfword[15]);
wire [31:0] LOAD_data =
mem_byteAccess ? {{24{LOAD_sign}}, LOAD_byte} :
mem_halfwordAccess ? {{16{LOAD_sign}}, LOAD_halfword} :
mem_rdata ;
wire [15:0] LOAD_halfword =
loadstore_addr[1] ? mem_rdata[31:16] : mem_rdata[15:0];
wire [7:0] LOAD_byte =
loadstore_addr[0] ? LOAD_halfword[15:8] : LOAD_halfword[7:0];
// STORE
assign mem_wdata[ 7: 0] = rs2[7:0];
assign mem_wdata[15: 8] = loadstore_addr[0] ? rs2[7:0] : rs2[15: 8];
assign mem_wdata[23:16] = loadstore_addr[1] ? rs2[7:0] : rs2[23:16];
assign mem_wdata[31:24] = loadstore_addr[0] ? rs2[7:0] :
loadstore_addr[1] ? rs2[15:8] : rs2[31:24];
// The memory write mask:
// 1111 if writing a word
// 0011 or 1100 if writing a halfword
// (depending on loadstore_addr[1])
// 0001, 0010, 0100 or 1000 if writing a byte
// (depending on loadstore_addr[1:0])
wire [3:0] STORE_wmask =
mem_byteAccess ?
(loadstore_addr[1] ?
(loadstore_addr[0] ? 4'b1000 : 4'b0100) :
(loadstore_addr[0] ? 4'b0010 : 4'b0001)
) :
mem_halfwordAccess ?
(loadstore_addr[1] ? 4'b1100 : 4'b0011) :
4'b1111;
/*************************************************************************/
// And, last but not least, the state machine.
/*************************************************************************/
localparam FETCH_INSTR_bit = 0;
localparam WAIT_INSTR_bit = 1;
localparam EXECUTE1_bit = 2;
localparam EXECUTE2_bit = 3;
localparam WAIT_ALU_OR_MEM_bit = 4;
localparam NB_STATES = 5;
localparam FETCH_INSTR = 1 << FETCH_INSTR_bit;
localparam WAIT_INSTR = 1 << WAIT_INSTR_bit;
localparam EXECUTE1 = 1 << EXECUTE1_bit;
localparam EXECUTE2 = 1 << EXECUTE2_bit;
localparam WAIT_ALU_OR_MEM = 1 << WAIT_ALU_OR_MEM_bit;
(* onehot *)
reg [NB_STATES-1:0] state;
// The signals (internal and external) that are determined
// combinatorially from state and other signals.
// register write-back enable.
wire writeBack = ~(isBranch | isStore ) &
(state[EXECUTE2_bit] | state[WAIT_ALU_OR_MEM_bit]);
// The memory-read signal.
assign mem_rstrb = state[EXECUTE2_bit] & isLoad | state[FETCH_INSTR_bit];
// The mask for memory-write.
assign mem_wmask = {4{state[EXECUTE2_bit] & isStore}} & STORE_wmask;
// aluWr starts computation (shifts) in the ALU.
assign aluWr = state[EXECUTE1_bit] & isALU;
wire jumpToPCplusImm = isJAL | (isBranch & predicate);
`ifdef NRV_IS_IO_ADDR
wire needToWait = isLoad |
isStore & `NRV_IS_IO_ADDR(mem_addr) |
aluBusy;
`else
wire needToWait = isLoad | isStore | aluBusy;
`endif
always @(posedge clk) begin
if(!reset) begin
state <= WAIT_ALU_OR_MEM; // Just waiting for !mem_wbusy
PC <= RESET_ADDR[ADDR_WIDTH-1:0];
end else
// See note [1] at the end of this file.
(* parallel_case *)
case(1'b1)
state[WAIT_INSTR_bit]: begin
if(!mem_rbusy) begin // may be high when executing from SPI flash
rs1 <= registerFile[mem_rdata[19:15]];
rs2 <= registerFile[mem_rdata[24:20]];
instr <= mem_rdata[31:2]; // Bits 0 and 1 are ignored (see
state <= EXECUTE1; // also the declaration of instr).
end
end
state[EXECUTE1_bit]: begin
// branch->PC+Bimm AUIPC->PC+Uimm JAL->PC+Jimm
// Equivalent to:
// PCplusImm <= PC + (isJAL ? Jimm : isAUIPC ? Uimm : Bimm)
PCplusImm <= PC + ( instr[3] ? Jimm[ADDR_WIDTH-1:0] :
instr[4] ? Uimm[ADDR_WIDTH-1:0] :
Bimm[ADDR_WIDTH-1:0] );
// testing instr[5] is equivalent to testing isStore in this context.
loadstore_addr <= rs1[ADDR_WIDTH-1:0] +
(instr[5] ? Simm[ADDR_WIDTH-1:0] : Iimm[ADDR_WIDTH-1:0]);
predicate <= predicate_;
state <= EXECUTE2;
end
state[EXECUTE2_bit]: begin
PC <= isJALR ? {aluPlus[ADDR_WIDTH-1:1],1'b0} :
jumpToPCplusImm ? PCplusImm :
PCplus4;
state <= needToWait ? WAIT_ALU_OR_MEM : FETCH_INSTR;
end
state[WAIT_ALU_OR_MEM_bit]: begin
if(!aluBusy & !mem_rbusy & !mem_wbusy) state <= FETCH_INSTR;
end
default: begin // FETCH_INSTR
state <= WAIT_INSTR;
end
endcase
end
/***************************************************************************/
// Cycle counter
/***************************************************************************/
`ifdef NRV_COUNTER_WIDTH
reg [`NRV_COUNTER_WIDTH-1:0] cycles;
`else
reg [31:0] cycles;
`endif
always @(posedge clk) cycles <= cycles + 1;
endmodule
/*****************************************************************************/
// Notes:
//
// [1] About the "reverse case" statement, also used in Claire Wolf's picorv32:
// It is just a cleaner way of writing a series of cascaded if() statements,
// To understand it, think about the case statement *in general* as follows:
// case (expr)
// val_1: statement_1
// val_2: statement_2
// ... val_n: statement_n
// endcase
// The first statement_i such that expr == val_i is executed.
// Now if expr is 1'b1:
// case (1'b1)
// cond_1: statement_1
// cond_2: statement_2
// ... cond_n: statement_n
// endcase
// It is *exactly the same thing*, the first statement_i such that
// expr == cond_i is executed (that is, such that 1'b1 == cond_i,
// in other words, such that cond_i is true)
// More on this:
// https://stackoverflow.com/questions/15418636/case-statement-in-verilog
//
// [2] state uses 1-hot encoding (at any time, state has only one bit set to 1).
// It uses a larger number of bits (one bit per state), but often results in
// a both more compact (fewer LUTs) and faster state machine.