// Convenience modules. // Rotates children around the Z axis by the given number of degrees. // Example: // xrot(90) cylinder(h=10, r=2, center=true); module xrot(a=0) { rotate([a, 0, 0]) children(); } // Rotates children around the Y axis by the given number of degrees. // Example: // yrot(90) cylinder(h=10, r=2, center=true); module yrot(a=0) { rotate([0, a, 0]) children(); } // Rotates children around the Z axis by the given number of degrees. // Example: // zrot(90) cube(size=[9,1,4], center=true); module zrot(a=0) { rotate([0, 0, a]) children(); } module skew_along_x(yang=0, zang=0) { multmatrix(m = [ [1, 0, 0, 0], [sin(yang), 1, 0, 0], [sin(zang), 0, 1, 0], [0, 0, 0, 1] ]) { children(); } } module skew_along_y(xang=0, zang=0) { multmatrix(m = [ [1, sin(xang), 0, 0], [0, 1, 0, 0], [0, sin(zang), 1, 0], [0, 0, 0, 1] ]) { children(); } } module skew_along_z(xang=0, yang=0) { multmatrix(m = [ [1, 0, sin(xang), 0], [0, 1, sin(yang), 0], [0, 0, 1, 0], [0, 0, 0, 1] ]) { children(); } } module mirror_copy(v=[0,0,1]) { union() { children(); mirror(v) children(); } } // Given a number of euller angles, rotates copies of the given children to each of those angles. // Example: // rot_copies(rots=[[0,0,0],[45,0,0],[0,45,120],[90,-45,270]]) // translate([6,0,0]) cube(size=[9,1,4], center=true); module rot_copies(rots=[[0,0,0]]) { for (rot = rots) rotate(rot) children(); } // Given an array of angles, rotates copies of the children to each of those angles around the X axis. // Example: // xrot_copies(rots=[0,15,30,60,120,240]) translate([0,6,0]) cube(size=[4,9,1], center=true); module xrot_copies(rots=[0]) { for (a = rots) rotate([a, 0, 0]) children(); } // Given an array of angles, rotates copies of the children to each of those angles around the Y axis. // Example: // yrot_copies(rots=[0,15,30,60,120,240]) translate([6,0,0]) cube(size=[9,4,1], center=true); module yrot_copies(rots=[0]) { for (a = rots) rotate([0, a, 0]) children(); } // Given an array of angles, rotates copies of the children to each of those angles around the Z axis. // Example: // zrot_copies(rots=[0,15,30,60,120,240]) translate([6,0,0]) cube(size=[9,1,4], center=true); module zrot_copies(rots=[0]) { for (a = rots) rotate([0, 0, a]) children(); } // Makes copies of the given children at each of the given offsets. // offsets = array of XYZ offset vectors. Default [[0,0,0]] // Example: // translate_copies([[-5,-5,0], [5,-5,0], [0,-5,7], [0,5,0]]) // sphere(r=3,center=true); module translate_copies(offsets=[[0,0,0]]) { for (off = offsets) translate(off) children(); } // Makes a 3D XYZ grid of duplicate children. // xa = array or range of X-axis values to offset by. (Default: [0]) // ya = array or range of Y-axis values to offset by. (Default: [0]) // za = array or range of Z-axis values to offset by. (Default: [0]) // Examples: // grid_of(xa=[0,2,3,5],ya=[3:5],za=[-4:2:6]) // sphere(r=1,center=true); // grid_of(ya=[-6:3:6],za=[4,7]) // sphere(r=1,center=true); module grid_of(xa=[0], ya=[0], za=[0]) { for (xoff = xa) for (yoff = ya) for (zoff = za) translate([xoff,yoff,zoff]) children(); } // Evenly distributes n duplicate children around a circle on the XY plane. // n = number of copies to distribute around the circle. (Default: 6) // r = radius of circle (Default: 1) // rx = radius of ellipse on X axis. Used instead of r. // ry = radius of ellipse on Y axis. Used instead of r. // d = diameter of circle. (Default: 2) // dx = diameter of ellipse on X axis. Used instead of d. // dy = diameter of ellipse on Y axis. Used instead of d. // rot = whether to rotate the copied children. (Default: false) // sa = starting angle. (Default: 0.0) // ea = ending angle. Will distribute copies CCW from sa to ea. (Default: 360.0) // Examples: // circle_of(d=8,n=5) // cube(size=[3,1,1],center=true); // circle_of(r=10,n=12,rot=true) // cube(size=[3,1,1],center=true); // circle_of(rx=15,ry=10,n=12,rot=true) // cube(size=[3,1,1],center=true); // circle_of(r=10,n=5,rot=true,sa=30.0,ea=150.0) // cube(size=[3,1,1],center=true); // module circle_of( n=6, r=1, rx=undef, ry=undef, d=undef, dx=undef, dy=undef, sa=0.0, ea=360.0, rot=false ) { r = (d == undef)?r:(d/2.0); rx = (dx == undef)?rx:(dx/2.0); ry = (dy == undef)?rx:(dy/2.0); rx = (rx == undef)?r:rx; ry = (ry == undef)?r:ry; sa = ((sa % 360.0) + 360.0) % 360.0; // make 0 < ang < 360 ea = ((ea % 360.0) + 360.0) % 360.0; // make 0 < ang < 360 n = (abs(ea-sa)<0.01)?(n+1):n; delt = (((ea<=sa)?360.0:0)+ea-sa)/(n-1); for (ang = [sa:delt:(sa+delt*(n-1))]) if (abs(abs(ang-sa)-360.0) > 0.01) translate([cos(ang)*rx,sin(ang)*ry,0]) rotate([0,0,rot?atan2(sin(ang)*ry,cos(ang)*rx):0]) children(); } // Evenly distributes n duplicate children along an XYZ line. // p1 = starting point of line. (Default: [0,0,0]) // p2 = ending point of line. (Default: [10,0,0]) // n = number of copies to distribute along the line. (Default: 6) // Examples: // line_of(p1=[0,0,0], p2=[-10,15,20], n=5) // cube(size=[3,1,1],center=true); // module line_of(p1=[0,0,0], p2=[10,0,0], n=6) { delta = (p2 - p1) / (n-1); for (i = [0:n-1]) translate([delta[0]*i,delta[1]*i,delta[2]*i]) children(); } // Makes a cube with rounded edges and corners. // size = size of cube [X,Y,Z]. (Default: [1,1,1]) // r = radius of edge/corner rounding. (Default: 0.25) // Examples: // rcube(size=[9,4,1], r=0.333, center=true, $fn=24); // rcube(size=[5,7,3], r=1); module rcube(size=[1,1,1], r=0.25, center=false, $fn=undef) { $fn = ($fn==undef)?max(18,floor(180/asin(1/r)/2)*2):$fn; xoff=abs(size[0])/2-r; yoff=abs(size[1])/2-r; zoff=abs(size[2])/2-r; offset = center?[0,0,0]:size/2; translate(offset) { union() { grid_of([-xoff,xoff],[-yoff,yoff],[-zoff,zoff]) sphere(r=r,center=true,$fn=$fn); grid_of(xa=[-xoff,xoff],ya=[-yoff,yoff]) cylinder(r=r,h=zoff*2,center=true,$fn=$fn); grid_of(xa=[-xoff,xoff],za=[-zoff,zoff]) rotate([90,0,0]) cylinder(r=r,h=yoff*2,center=true,$fn=$fn); grid_of(ya=[-yoff,yoff],za=[-zoff,zoff]) rotate([90,0,0]) rotate([0,90,0]) cylinder(r=r,h=xoff*2,center=true,$fn=$fn); cube(size=[xoff*2,yoff*2,size[2]], center=true); cube(size=[xoff*2,size[1],zoff*2], center=true); cube(size=[size[0],yoff*2,zoff*2], center=true); } } } // Makes a cube with rounded vertical edges. // size = size of cube [X,Y,Z]. (Default: [1,1,1]) // r = radius of edge/corner rounding. (Default: 0.25) // Examples: // rrect(size=[9,4,1], r=1, center=true); // rrect(size=[5,7,3], r=1, $fn=24); module rrect(size=[1,1,1], r=0.25, center=false, $fn=undef) { $fn = ($fn==undef)?max(18,floor(180/asin(1/r)/2)*2):$fn; xoff=abs(size[0])/2-r; yoff=abs(size[1])/2-r; offset = center?[0,0,0]:size/2; translate(offset) { union(){ grid_of([-xoff,xoff],[-yoff,yoff]) cylinder(r=r,h=size[2],center=true,$fn=$fn); cube(size=[xoff*2,size[1],size[2]], center=true); cube(size=[size[0],yoff*2,size[2]], center=true); } } } // Makes a cube with chamfered edges. // size = size of cube [X,Y,Z]. (Default: [1,1,1]) // chamfer = chamfer inset along axis. (Default: 0.25) module chamfcube( size=[1,1,1], chamfer=0.25 ) { ch_width = sqrt(2)*chamfer; ch_offset = 1; difference() { cube(size=size, center=true); for (xs = [-1,1]) { for (ys = [-1,1]) { translate([0,xs*size[1]/2,ys*size[2]/2]) { rotate(a=[45,0,0]) cube(size=[size[0]+0.1,ch_width,ch_width], center=true); } translate([xs*size[0]/2,0,ys*size[2]/2]) { rotate(a=[0,45,0]) cube(size=[ch_width,size[1]+0.1,ch_width], center=true); } translate([xs*size[0]/2,ys*size[1]/2],0) { rotate(a=[0,0,45]) cube(size=[ch_width,ch_width,size[2]+0.1], center=true); } } } } } // Makes a teardrop shape in the XZ plane. Useful for 3D printable holes. // r = radius of circular part of teardrop. (Default: 1) // h = thickness of teardrop. (Default: 1) // Example: // teardrop(r=3,h=2); module teardrop(r=1, h=1, $fn=undef) { $fn = ($fn==undef)?max(12,floor(180/asin(1/r)/2)*2):$fn; rotate([90,0,0]) rotate([0,0,45]) union() { translate([r/2,r/2,0]) cube(size=[r,r,h], center=true); cylinder(h=h, r=r, center=true); } } // Makes a simple threadless screw, useful for making screwholes. // screwsize = diameter of threaded part of screw. // screwlen = length of threaded part of screw. // headsize = diameter of the screw head. // headlen = length of the screw head. // Example: // screw(screwsize=3,screwlen=10,headsize=6,headlen=3); module screw(screwsize=3,screwlen=10,headsize=6,headlen=3,$fn=undef) { $fn = ($fn==undef)?max(8,floor(180/asin(2/screwsize)/2)*2):$fn; translate([0,0,-(screwlen)/2]) cylinder(r=screwsize/2, h=screwlen+0.05, center=true, $fn=$fn); translate([0,0,(headlen)/2]) cylinder(r=headsize/2, h=headlen, center=true, $fn=$fn*2); } function get_metric_bolt_head_size(size) = lookup(size, [ [ 4.0, 7.0], [ 5.0, 8.0], [ 6.0, 10.0], [ 7.0, 11.0], [ 8.0, 13.0], [10.0, 16.0], [12.0, 18.0], [14.0, 21.0], [16.0, 24.0], [18.0, 27.0], [20.0, 30.0] ]); function get_metric_nut_size(size) = lookup(size, [ [ 2.0, 4.0], [ 2.5, 5.0], [ 3.0, 5.5], [ 4.0, 7.0], [ 5.0, 8.0], [ 6.0, 10.0], [ 7.0, 11.0], [ 8.0, 13.0], [10.0, 17.0], [12.0, 19.0], [14.0, 22.0], [16.0, 24.0], [18.0, 27.0], [20.0, 30.0], ]); function get_metric_nut_thickness(size) = lookup(size, [ [ 2.0, 1.6], [ 2.5, 2.0], [ 3.0, 2.4], [ 4.0, 3.2], [ 5.0, 4.0], [ 6.0, 5.0], [ 7.0, 5.5], [ 8.0, 6.5], [10.0, 8.0], [12.0, 10.0], [14.0, 11.0], [16.0, 13.0], [18.0, 15.0], [20.0, 16.0] ]); // Makes an unthreaded model of a standard nut for a standard metric screw. // size = standard metric screw size in mm. (Default: 3) // hole = include an unthreaded hole in the nut. (Default: true) // Example: // metric_nut(size=8, hole=true); // metric_nut(size=3, hole=false); module metric_nut(size=3, hole=true, $fn=undef) { $fn = ($fn==undef)?max(8,floor(180/asin(2/size)/2)*2):$fn; radius = get_metric_nut_size(size)/2/cos(30); thick = get_metric_nut_thickness(size); translate([0,0,thick/2]) difference() { cylinder(r=radius, h=thick, center=true, $fn=6); if (hole == true) cylinder(r=size/2, h=thick+0.5, center=true, $fn=$fn); } } function get_lmXuu_bearing_diam(size) = lookup(size, [ [ 4.0, 8.0], [ 5.0, 10.0], [ 6.0, 12.0], [ 8.0, 15.0], [ 10.0, 19.0], [ 12.0, 21.0], [ 13.0, 23.0], [ 16.0, 28.0], [ 20.0, 32.0], [ 25.0, 40.0], [ 30.0, 45.0], [ 35.0, 52.0], [ 40.0, 60.0], [ 50.0, 80.0], [ 60.0, 90.0], [ 80.0, 120.0], [100.0, 150.0] ]); function get_lmXuu_bearing_length(size) = lookup(size, [ [ 4.0, 12.0], [ 5.0, 15.0], [ 6.0, 19.0], [ 8.0, 24.0], [ 10.0, 29.0], [ 12.0, 30.0], [ 13.0, 32.0], [ 16.0, 37.0], [ 20.0, 42.0], [ 25.0, 59.0], [ 30.0, 64.0], [ 35.0, 70.0], [ 40.0, 80.0], [ 50.0, 100.0], [ 60.0, 110.0], [ 80.0, 140.0], [100.0, 175.0] ]); // Creates a model of a clamp to hold a given linear bearing cartridge. // d = Diameter of linear bearing. (Default: 15) // l = Length of linear bearing. (Default: 24) // tab = Clamp tab height. (Default: 7) // tabwall = Clamp Tab thickness. (Default: 5) // wall = Wall thickness of clamp housing. (Default: 3) // gap = Gap in clamp. (Default: 5) // screwsize = Size of screw to use to tighten clamp. (Default: 3) module linear_bearing_housing(d=15,l=24,tab=7,gap=5,wall=3,tabwall=5,screwsize=3) { od = d+2*wall; ogap = gap+2*tabwall; tabh = tab/2+od/2*sqrt(2)-ogap/2; translate([0,0,od/2]) difference() { union() { rotate([0,0,90]) teardrop(r=od/2,h=l); translate([0,0,tabh]) cube(size=[l,ogap,tab+0.05], center=true); translate([0,0,-od/4]) cube(size=[l,od,od/2], center=true); } rotate([0,0,90]) teardrop(r=d/2,h=l+0.05); translate([0,0,(d*sqrt(2)+tab)/2]) cube(size=[l+0.05,gap,d+tab], center=true); translate([0,0,tabh]) { translate([0,-ogap/2+2-0.05,0]) rotate([90,0,0]) screw(screwsize=screwsize*1.06, screwlen=ogap, headsize=screwsize*2, headlen=10); translate([0,ogap/2+0.05,0]) rotate([90,0,0]) metric_nut(size=screwsize,hole=false); } } } module lmXuu_housing(size=8,tab=7,gap=5,wall=3,tabwall=5,screwsize=3) { d = get_lmXuu_bearing_diam(size); l = get_lmXuu_bearing_length(size); linear_bearing_housing(d=d,l=l,tab=tab,gap=gap,wall=wall,tabwall=tabwall,screwsize=screwsize); } //lmXuu_housing(size=8); //lmXuu_housing(size=10); // Makes a hollow tube with the given size and wall thickness. // h = height of tube. (Default: 1) // r = Outer radius of tube. (Default: 1) // r1 = Outer radius of bottom of tube. (Default: value of r) // r2 = Outer radius of top of tube. (Default: value of r) // wall = horizontal thickness of tube wall. (Default 0.5) // Example: // tube(h=3, r=4, wall=1, center=true); // tube(h=6, r=4, wall=2, $fn=6); // tube(h=3, r1=5, r2=7, wall=2, center=true); module tube(h=1, r=1, r1=undef, r2=undef, wall=0.5, center=false, $fn=undef) { r1 = (r1==undef)? r : r1; r2 = (r2==undef)? r : r2; $fn = ($fn==undef)?max(12,floor(180/asin(2/max(r1,r2))/2)*2):$fn; difference() { cylinder(h=h, r1=r1, r2=r2, center=center, $fn=$fn); cylinder(h=h+0.03, r1=r1-wall, r2=r2-wall, center=center, $fn=$fn); } } // Example: // narrowing_strut(w=10, l=100, wall=3, ang=30); module narrowing_strut(w=10, l=100, wall=5, ang=30) { union() { translate([0, 0, wall/2]) cube(size=[w, l, wall], center=true); difference() { translate([0, 0, wall]) scale([1, 1, 1/tan(ang)]) yrot(45) cube(size=[w/sqrt(2), l, w/sqrt(2)], center=true); translate([0, 0, -w+0.05]) cube(size=[w+1, l+1, w*2], center=true); } } } //!narrowing_strut(); // Makes a wall which thins to a smaller width in the center, // with angled supports to prevent critical overhangs. // Example: // thinning_wall(h=50, l=100, thick=4, ang=30, strut=5, wall=2); module thinning_wall(h=50, l=100, thick=5, ang=30, strut=5, wall=3, bracing=true) { dang = atan((h-2*strut)/(l-2*strut)); dlen = (h-2*strut)/sin(dang); union() { xrot_copies([0, 180]) { translate([0, 0, -h/2]) narrowing_strut(w=thick, l=l, wall=strut, ang=ang); translate([0, -l/2, 0]) xrot(-90) narrowing_strut(w=thick, l=h-0.1, wall=strut, ang=ang); if (bracing == true) { intersection() { cube(size=[thick, l, h], center=true); xrot_copies([-dang,dang]) { grid_of(za=[-strut/4, strut/4]) { scale([1,1,1.5]) yrot(45) { cube(size=[thick/sqrt(2), dlen, thick/sqrt(2)], center=true); } } cube(size=[thick, dlen, strut/2], center=true); } } } } cube(size=[wall, l-0.1, h-0.1], center=true); } } //!thinning_wall(, bracing=false); // Example: // sparse_strut(h=40, l=120, thick=4, maxang=30, strut=5, max_bridge=20); module sparse_strut(h=50, l=100, thick=4, maxang=30, strut=5, max_bridge = 20) { zoff = h/2 - strut/2; yoff = l/2 - strut/2; maxhyp = 1.5 * (max_bridge+strut)/2 / sin(maxang); maxz = 2 * maxhyp * cos(maxang); zreps = ceil(2*zoff/maxz); zstep = 2*zoff / zreps; hyp = zstep/2 / cos(maxang); maxy = min(2 * hyp * sin(maxang), max_bridge+strut); yreps = ceil(2*yoff/maxy); ystep = 2*yoff / yreps; ang = atan(ystep/zstep); len = zstep / cos(ang); union() { grid_of(za=[-zoff, zoff]) cube(size=[thick, l, strut], center=true); grid_of(ya=[-yoff, yoff]) cube(size=[thick, strut, h], center=true); grid_of(ya=[-yoff+ystep/2:ystep:yoff], za=[-zoff+zstep/2:zstep:zoff]) { xrot( ang) cube(size=[thick, strut, len], center=true); xrot(-ang) cube(size=[thick, strut, len], center=true); } } } module torus(or=1, ir=0.5) { rotate_extrude(convexity = 10) translate([(or-ir)/2+ir, 0, 0]) circle(r = (or-ir)/2, $fs=1); } //!torus(or=30, ir=10); // vim: tabstop=4 noexpandtab shiftwidth=4 softtabstop=4 nowrap