mirror of
				https://github.com/davidgiven/fluxengine.git
				synced 2025-10-24 11:11:02 -07:00 
			
		
		
		
	
		
			
				
	
	
		
			1013 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1013 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <stdint.h>
 | |
| #include <stdbool.h>
 | |
| #include <stdio.h>
 | |
| #include <stdarg.h>
 | |
| #include <setjmp.h>
 | |
| #include "project.h"
 | |
| #include "../protocol.h"
 | |
| 
 | |
| #define MOTOR_ON_TIME 5000 /* milliseconds */
 | |
| #define STEP_INTERVAL_TIME 6 /* ms */
 | |
| #define STEP_SETTLING_TIME 50 /* ms */
 | |
| 
 | |
| #define DISKSTATUS_WPT    1
 | |
| #define DISKSTATUS_DSKCHG 2
 | |
| 
 | |
| #define STEP_TOWARDS0 0
 | |
| #define STEP_AWAYFROM0 1
 | |
| 
 | |
| static bool drive0_present;
 | |
| static bool drive1_present;
 | |
| 
 | |
| static volatile uint32_t clock = 0; /* ms */
 | |
| static volatile bool index_irq = false;
 | |
| /* Duration in ms. 0 causes every pulse to be an index pulse. Durations since
 | |
|  * last pulse greater than this value imply sector pulse. Otherwise is an index
 | |
|  * pulse. */
 | |
| static volatile uint32_t hardsec_index_threshold = 0;
 | |
| 
 | |
| static bool motor_on = false;
 | |
| static uint32_t motor_on_time = 0;
 | |
| static bool homed = false;
 | |
| static int current_track = 0;
 | |
| static struct set_drive_frame current_drive_flags;
 | |
| 
 | |
| #define BUFFER_COUNT 64 /* the maximum */
 | |
| #define BUFFER_SIZE 64
 | |
| static uint8_t td[BUFFER_COUNT];
 | |
| static uint8_t dma_buffer[BUFFER_COUNT][BUFFER_SIZE] __attribute__((aligned()));
 | |
| static uint8_t usb_buffer[BUFFER_SIZE] __attribute__((aligned()));
 | |
| static uint8_t dma_channel;
 | |
| #define NEXT_BUFFER(b) (((b)+1) % BUFFER_COUNT)
 | |
| 
 | |
| static volatile int dma_writing_to_td = 0;
 | |
| static volatile int dma_reading_from_td = 0;
 | |
| static volatile bool dma_underrun = false;
 | |
| 
 | |
| #define DECLARE_REPLY_FRAME(STRUCT, TYPE) \
 | |
|     STRUCT r = {.f = { .type = TYPE, .size = sizeof(STRUCT) }}
 | |
| 
 | |
| static void stop_motor(void);
 | |
| 
 | |
| static void system_timer_cb(void)
 | |
| {
 | |
|     CyGlobalIntDisable;
 | |
|     clock++;
 | |
|     
 | |
|     static int counter300rpm = 0;
 | |
|     counter300rpm++;
 | |
|     if (counter300rpm == 200)
 | |
|         counter300rpm = 0;
 | |
|     
 | |
|     static int counter360rpm = 0;
 | |
|     counter360rpm++;
 | |
|     if (counter360rpm == 167)
 | |
|         counter360rpm = 0;
 | |
|     
 | |
|     FAKE_INDEX_GENERATOR_REG_Write(
 | |
|         ((counter300rpm == 0) ? 1 : 0)
 | |
|         | ((counter360rpm == 0) ? 2 : 0));
 | |
|     
 | |
|     CyGlobalIntEnable;
 | |
| }
 | |
| 
 | |
| CY_ISR(index_irq_cb)
 | |
| {
 | |
|     /* Hard sectored media has sector pulses at the beginning of every sector
 | |
|      * and the index pulse is an extra pulse in the middle of the last sector.
 | |
|      * When the extra pulse is seen, the next sector pulse is also the start of
 | |
|      * the track. */
 | |
|     static bool hardsec_index_irq_primed = false;
 | |
|     static uint32_t hardsec_last_pulse_time = 0;
 | |
|     uint32_t index_pulse_duration = clock - hardsec_last_pulse_time;
 | |
| 
 | |
|     if (!hardsec_index_threshold)
 | |
|     {
 | |
|         index_irq = true;
 | |
|         hardsec_index_irq_primed = false;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         /* It's only an index pulse if the previous pulse is less than
 | |
|          * the threshold.
 | |
|          */
 | |
|         index_irq = (index_pulse_duration <= hardsec_index_threshold) ?
 | |
|             hardsec_index_irq_primed : false;
 | |
| 
 | |
|         if (index_irq)
 | |
|             hardsec_index_irq_primed = false;
 | |
|         else
 | |
|             hardsec_index_irq_primed =
 | |
|                 index_pulse_duration <= hardsec_index_threshold;
 | |
| 
 | |
|         hardsec_last_pulse_time = clock;
 | |
|     }
 | |
|     
 | |
|     /* Stop writing the instant the index pulse comes along; it may take a few
 | |
|      * moments for the main code to notice the pulse, and we don't want to overwrite
 | |
|      * the beginning of the track. */
 | |
|     if (index_irq)
 | |
|         ERASE_REG_Write(0);
 | |
| }
 | |
| 
 | |
| CY_ISR(capture_dma_finished_irq_cb)
 | |
| {
 | |
|     dma_writing_to_td = NEXT_BUFFER(dma_writing_to_td);
 | |
|     if (dma_writing_to_td == dma_reading_from_td)
 | |
|         dma_underrun = true;
 | |
| }
 | |
| 
 | |
| CY_ISR(replay_dma_finished_irq_cb)
 | |
| {
 | |
|     dma_reading_from_td = NEXT_BUFFER(dma_reading_from_td);
 | |
|     if (dma_reading_from_td == dma_writing_to_td)
 | |
|         dma_underrun = true;
 | |
| }
 | |
| 
 | |
| static void print(const char* msg, ...)
 | |
| {
 | |
|     char buffer[64];
 | |
|     
 | |
|     va_list ap;
 | |
|     va_start(ap, msg);
 | |
|     vsnprintf(buffer, sizeof(buffer), msg, ap);
 | |
|     va_end(ap);
 | |
|     
 | |
|     UART_PutString(buffer);
 | |
|     UART_PutCRLF();
 | |
| }
 | |
| 
 | |
| static void set_drive_flags(struct set_drive_frame* flags)
 | |
| {
 | |
|     if (current_drive_flags.drive != flags->drive)
 | |
|     {
 | |
|         stop_motor();
 | |
|         homed = false;
 | |
|     }
 | |
|     
 | |
|     current_drive_flags = *flags;
 | |
|     DRIVESELECT_REG_Write(flags->drive ? 2 : 1); /* select drive 1 or 0 */
 | |
|     DENSITY_REG_Write(!flags->high_density); /* double density bit */
 | |
|     INDEX_REG_Write(flags->index_mode);
 | |
| }
 | |
| 
 | |
| static void start_motor(void)
 | |
| {
 | |
|     if (!motor_on)
 | |
|     {
 | |
|         set_drive_flags(¤t_drive_flags);
 | |
|         MOTOR_REG_Write(1);
 | |
|         CyDelay(1000);
 | |
|         homed = false;
 | |
|     }
 | |
| 
 | |
|     motor_on_time = clock;
 | |
|     motor_on = true;
 | |
|     CyWdtClear();
 | |
| }
 | |
| 
 | |
| static void stop_motor(void)
 | |
| {
 | |
|     if (motor_on)
 | |
|     {
 | |
|         MOTOR_REG_Write(0);
 | |
|         DRIVESELECT_REG_Write(0); /* deselect all drives */
 | |
|         motor_on = false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void wait_until_writeable(int ep)
 | |
| {
 | |
|     while (USBFS_GetEPState(ep) != USBFS_IN_BUFFER_EMPTY)
 | |
|         ;
 | |
| }
 | |
| 
 | |
| static void wait_until_readable(int ep)
 | |
| {
 | |
|     while (USBFS_GetEPState(ep) != USBFS_OUT_BUFFER_FULL)
 | |
|         ;
 | |
| }
 | |
| 
 | |
| static void send_reply(struct any_frame* f)
 | |
| {
 | |
|     print("reply 0x%02x", f->f.type);
 | |
|     wait_until_writeable(FLUXENGINE_CMD_IN_EP_NUM);
 | |
|     USBFS_LoadInEP(FLUXENGINE_CMD_IN_EP_NUM, (uint8_t*) f, f->f.size);
 | |
| }
 | |
| 
 | |
| static void send_error(int code)
 | |
| {
 | |
|     DECLARE_REPLY_FRAME(struct error_frame, F_FRAME_ERROR);
 | |
|     r.error = code;
 | |
|     send_reply((struct any_frame*) &r);
 | |
| }
 | |
| 
 | |
| /* buffer must be big enough for a frame */
 | |
| static int usb_read(int ep, uint8_t buffer[FRAME_SIZE])
 | |
| {
 | |
|     if (USBFS_GetEPState(ep) != USBFS_OUT_BUFFER_FULL)
 | |
|     {
 | |
|         USBFS_EnableOutEP(ep);
 | |
|         wait_until_readable(ep);
 | |
|     }
 | |
| 
 | |
|     int length = USBFS_GetEPCount(ep);
 | |
|     USBFS_ReadOutEP(ep, buffer, length);
 | |
|     while (USBFS_GetEPState(ep) != USBFS_OUT_BUFFER_EMPTY)
 | |
|         ;
 | |
|     return length;
 | |
| }
 | |
| 
 | |
| static void cmd_get_version(struct any_frame* f)
 | |
| {
 | |
|     DECLARE_REPLY_FRAME(struct version_frame, F_FRAME_GET_VERSION_REPLY);
 | |
|     r.version = FLUXENGINE_PROTOCOL_VERSION;
 | |
|     send_reply((struct any_frame*) &r);
 | |
| }
 | |
| 
 | |
| static void step(int dir)
 | |
| {
 | |
|     STEP_REG_Write(dir); /* step high */
 | |
|     CyDelayUs(6);
 | |
|     STEP_REG_Write(dir | 2); /* step low */
 | |
|     CyDelayUs(6);
 | |
|     STEP_REG_Write(dir); /* step high again, drive moves now */
 | |
|     CyDelay(STEP_INTERVAL_TIME);
 | |
| }
 | |
| 
 | |
| /* returns true if it looks like a drive is attached */
 | |
| static bool home(void)
 | |
| {
 | |
|     for (int i=0; i<100; i++)
 | |
|     {
 | |
|         /* Don't keep stepping forever, because if a drive's
 | |
|          * not connected bad things happen. */
 | |
|         if (TRACK0_REG_Read())
 | |
|             return true;
 | |
|         step(STEP_TOWARDS0);
 | |
|     }
 | |
|     
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static void seek_to(int track)
 | |
| {
 | |
|     start_motor();
 | |
|     if (!homed || (track == 0))
 | |
|     {
 | |
|         print("homing");
 | |
|         home();
 | |
|         
 | |
|         homed = true;
 | |
|         current_track = 0;
 | |
|         CyDelayUs(1); /* for direction change */
 | |
|     }
 | |
|     
 | |
|     print("beginning seek from %d to %d", current_track, track);
 | |
|     while (track != current_track)
 | |
|     {
 | |
|         if (TRACK0_REG_Read())
 | |
|             current_track = 0;
 | |
|         
 | |
|         if (track > current_track)
 | |
|         {
 | |
|             step(STEP_AWAYFROM0);
 | |
|             current_track++;
 | |
|         }
 | |
|         else if (track < current_track)
 | |
|         {
 | |
|             step(STEP_TOWARDS0);
 | |
|             current_track--;
 | |
|         }
 | |
|         CyWdtClear();
 | |
|     }
 | |
|     CyDelay(STEP_SETTLING_TIME);
 | |
|     TK43_REG_Write(track < 43); /* high if 0..42, low if 43 or up */
 | |
|     print("finished seek");
 | |
| }
 | |
| 
 | |
| static void cmd_seek(struct seek_frame* f)
 | |
| {
 | |
|     seek_to(f->track);
 | |
|     DECLARE_REPLY_FRAME(struct any_frame, F_FRAME_SEEK_REPLY);
 | |
|     send_reply(&r);    
 | |
| }
 | |
| 
 | |
| static void cmd_recalibrate(void)
 | |
| {
 | |
|     homed = false;
 | |
|     seek_to(0);
 | |
|     DECLARE_REPLY_FRAME(struct any_frame, F_FRAME_RECALIBRATE_REPLY);
 | |
|     send_reply(&r);    
 | |
| }
 | |
|     
 | |
| static void cmd_measure_speed(struct measurespeed_frame* f)
 | |
| {
 | |
|     start_motor();
 | |
|     
 | |
|     index_irq = false;
 | |
|     int start_clock = clock;
 | |
|     int elapsed = 0;
 | |
|     while (!index_irq)
 | |
|     {
 | |
|         elapsed = clock - start_clock;
 | |
|         if (elapsed > 1500)
 | |
|         {
 | |
|             elapsed = 0;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (elapsed != 0)
 | |
|     {
 | |
|         int target_pulse_count = f->hard_sector_count + 1;
 | |
|         start_clock = clock;
 | |
|         for (int x=0; x<target_pulse_count; x++)
 | |
|         {
 | |
|             index_irq = false;
 | |
|             while (!index_irq)
 | |
|                 elapsed = clock - start_clock;
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     DECLARE_REPLY_FRAME(struct speed_frame, F_FRAME_MEASURE_SPEED_REPLY);
 | |
|     r.period_ms = elapsed;
 | |
|     send_reply((struct any_frame*) &r);    
 | |
| }
 | |
| 
 | |
| static void cmd_bulk_write_test(struct any_frame* f)
 | |
| {
 | |
|     uint8_t buffer[64];
 | |
|     
 | |
|     wait_until_writeable(FLUXENGINE_DATA_IN_EP_NUM);
 | |
|     for (int x=0; x<64; x++)
 | |
|     {
 | |
|         CyWdtClear();
 | |
|         for (int y=0; y<256; y++)
 | |
|         {
 | |
|             for (unsigned z=0; z<sizeof(buffer); z++)
 | |
|                 buffer[z] = x+y+z;
 | |
|             
 | |
|             wait_until_writeable(FLUXENGINE_DATA_IN_EP_NUM);
 | |
|             USBFS_LoadInEP(FLUXENGINE_DATA_IN_EP_NUM, buffer, sizeof(buffer));
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     DECLARE_REPLY_FRAME(struct any_frame, F_FRAME_BULK_WRITE_TEST_REPLY);
 | |
|     send_reply(&r);
 | |
| }
 | |
| 
 | |
| static void cmd_bulk_read_test(struct any_frame* f)
 | |
| {
 | |
|     uint8_t buffer[64];
 | |
|     
 | |
|     bool passed = true;
 | |
|     for (int x=0; x<64; x++)
 | |
|     {
 | |
|         CyWdtClear();
 | |
|         for (int y=0; y<256; y++)
 | |
|         {
 | |
|             usb_read(FLUXENGINE_DATA_OUT_EP_NUM, buffer);
 | |
|             for (unsigned z=0; z<sizeof(buffer); z++)
 | |
|             {
 | |
|                 if (buffer[z] != (uint8)(x+y+z))
 | |
|                 {
 | |
|                     print("fail %d+%d+%d == %d, not %d", x, y, z, buffer[z], (uint8)(x+y+z));
 | |
|                     passed = false;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     print("passed=%d", passed);
 | |
|     if (passed)
 | |
|     {
 | |
|         DECLARE_REPLY_FRAME(struct any_frame, F_FRAME_BULK_READ_TEST_REPLY);
 | |
|         send_reply(&r);
 | |
|     }
 | |
|     else
 | |
|         send_error(F_ERROR_INVALID_VALUE);
 | |
| }
 | |
| 
 | |
| static void deinit_dma(void)
 | |
| {
 | |
|     for (int i=0; i<BUFFER_COUNT; i++)
 | |
|         CyDmaTdFree(td[i]);
 | |
| }
 | |
| 
 | |
| static void init_capture_dma(void)
 | |
| {
 | |
|     dma_channel = SAMPLER_DMA_DmaInitialize(
 | |
|         1 /* bytes */,
 | |
|         true /* request per burst */, 
 | |
|         HI16(CYDEV_PERIPH_BASE),
 | |
|         HI16(CYDEV_SRAM_BASE));
 | |
|     
 | |
|     for (int i=0; i<BUFFER_COUNT; i++)
 | |
|         td[i] = CyDmaTdAllocate(); 
 | |
|     for (int i=0; i<BUFFER_COUNT; i++)
 | |
|     {
 | |
|         int nexti = i+1;
 | |
|         if (nexti == BUFFER_COUNT)
 | |
|             nexti = 0;
 | |
| 
 | |
|         CyDmaTdSetConfiguration(td[i], BUFFER_SIZE, td[nexti],   
 | |
|             CY_DMA_TD_INC_DST_ADR | SAMPLER_DMA__TD_TERMOUT_EN);
 | |
|         CyDmaTdSetAddress(td[i], LO16((uint32)SAMPLER_FIFO_FIFO_PTR), LO16((uint32)&dma_buffer[i]));
 | |
|     }    
 | |
| }
 | |
| 
 | |
| static void cmd_read(struct read_frame* f)
 | |
| {
 | |
|     seek_to(current_track);
 | |
|     SIDE_REG_Write(f->side);
 | |
|     STEP_REG_Write(f->side); /* for drives which multiplex SIDE and DIR */
 | |
|     /* Do slow setup *before* we go into the real-time bit. */
 | |
|     
 | |
|     {
 | |
|         uint8_t i = CyEnterCriticalSection();
 | |
|         SAMPLER_FIFO_SET_LEVEL_NORMAL;
 | |
|         SAMPLER_FIFO_CLEAR;
 | |
|         SAMPLER_FIFO_SINGLE_BUFFER_UNSET;
 | |
|         CyExitCriticalSection(i);
 | |
|     }
 | |
|     
 | |
|     wait_until_writeable(FLUXENGINE_DATA_IN_EP_NUM);
 | |
|     init_capture_dma();
 | |
| 
 | |
|     /* Wait for the beginning of a rotation, if requested. */
 | |
|         
 | |
|     if (f->synced)
 | |
|     {
 | |
|         hardsec_index_threshold = f->hardsec_threshold_ms;
 | |
|         index_irq = false;
 | |
|         while (!index_irq)
 | |
|             ;
 | |
|         index_irq = false;
 | |
|         hardsec_index_threshold = 0;
 | |
|     }
 | |
|     
 | |
|     dma_writing_to_td = 0;
 | |
|     dma_reading_from_td = -1;
 | |
|     dma_underrun = false;
 | |
|     int count = 0;
 | |
|     CyDmaChSetInitialTd(dma_channel, td[dma_writing_to_td]);
 | |
|     CyDmaClearPendingDrq(dma_channel);
 | |
|     CyDmaChEnable(dma_channel, 1);
 | |
| 
 | |
|     /* Wait for the first DMA transfer to complete, after which we can start the
 | |
|      * USB transfer. */
 | |
| 
 | |
|     while (dma_writing_to_td == 0)
 | |
|         ;
 | |
|     dma_reading_from_td = 0;
 | |
|     bool dma_running = true;
 | |
|     
 | |
|     /* Start transferring. */
 | |
| 
 | |
|     uint32_t start_time = clock;
 | |
|     for (;;)
 | |
|     {
 | |
|         CyWdtClear();
 | |
| 
 | |
|         /* If the sample session is over, stop reading but continue processing until
 | |
|          * the DMA chain is empty. */
 | |
|         
 | |
|         if ((clock - start_time) >= f->milliseconds)
 | |
|         {
 | |
|             if (dma_running)
 | |
|             {
 | |
|                 CyDmaChSetRequest(dma_channel, CY_DMA_CPU_TERM_CHAIN);
 | |
|                 while (CyDmaChGetRequest(dma_channel))
 | |
|                     ;
 | |
|                 dma_running = false;
 | |
|                 dma_underrun = false;
 | |
|             }
 | |
|         }
 | |
|         
 | |
|         /* If there's an underrun event, stop immediately. */
 | |
|         
 | |
|         if (dma_underrun)
 | |
|             goto abort;
 | |
|         
 | |
|         /* If there are no more blocks to be read, check to see if we've finished. */
 | |
|         
 | |
|         if (dma_reading_from_td == dma_writing_to_td)
 | |
|         {
 | |
|             /* Also if we've run out of blocks to send. */
 | |
|             
 | |
|             if (!dma_running)
 | |
|                 goto abort;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             /* Otherwise, there's a block waiting, so attempt to send it. */
 | |
|             
 | |
|             wait_until_writeable(FLUXENGINE_DATA_IN_EP_NUM);
 | |
|             USBFS_LoadInEP(FLUXENGINE_DATA_IN_EP_NUM, dma_buffer[dma_reading_from_td], BUFFER_SIZE);
 | |
|             count++;
 | |
|             dma_reading_from_td = NEXT_BUFFER(dma_reading_from_td);
 | |
|         }
 | |
|     }
 | |
| abort:;
 | |
|     bool saved_dma_underrun = dma_underrun;
 | |
| 
 | |
|     /* Terminate the transfer (all transfers are an exact number of fragments). */
 | |
|     wait_until_writeable(FLUXENGINE_DATA_IN_EP_NUM);
 | |
|     USBFS_LoadInEP(FLUXENGINE_DATA_IN_EP_NUM, NULL, 0);
 | |
|     wait_until_writeable(FLUXENGINE_DATA_IN_EP_NUM);
 | |
|     deinit_dma();
 | |
| 
 | |
|     STEP_REG_Write(0);
 | |
|     if (saved_dma_underrun)
 | |
|     {
 | |
|         print("underrun after %d packets");
 | |
|         send_error(F_ERROR_UNDERRUN);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         DECLARE_REPLY_FRAME(struct any_frame, F_FRAME_READ_REPLY);
 | |
|         send_reply(&r);
 | |
|     }
 | |
|     print("count=%d i=%d d=%d", count, index_irq, dma_underrun);
 | |
| }
 | |
| 
 | |
| static void init_replay_dma(void)
 | |
| {
 | |
|     dma_channel = SEQUENCER_DMA_DmaInitialize(
 | |
|         1 /* bytes */,
 | |
|         true /* request per burst */, 
 | |
|         HI16(CYDEV_SRAM_BASE),
 | |
|         HI16(CYDEV_PERIPH_BASE));
 | |
|     
 | |
|     for (int i=0; i<BUFFER_COUNT; i++)
 | |
|         td[i] = CyDmaTdAllocate(); 
 | |
|     for (int i=0; i<BUFFER_COUNT; i++)
 | |
|     {
 | |
|         int nexti = i+1;
 | |
|         if (nexti == BUFFER_COUNT)
 | |
|             nexti = 0;
 | |
| 
 | |
|         CyDmaTdSetConfiguration(td[i], BUFFER_SIZE, td[nexti],
 | |
|             CY_DMA_TD_INC_SRC_ADR | SEQUENCER_DMA__TD_TERMOUT_EN);
 | |
|         CyDmaTdSetAddress(td[i], LO16((uint32)&dma_buffer[i]), LO16((uint32)REPLAY_FIFO_FIFO_PTR));
 | |
|     }    
 | |
| }
 | |
| 
 | |
| static void cmd_write(struct write_frame* f)
 | |
| {
 | |
|     print("cmd_write");
 | |
|     
 | |
|     if (f->bytes_to_write % FRAME_SIZE)
 | |
|     {
 | |
|         send_error(F_ERROR_INVALID_VALUE);
 | |
|         return;
 | |
|     }
 | |
|     
 | |
|     seek_to(current_track);    
 | |
|     SIDE_REG_Write(f->side);
 | |
|     STEP_REG_Write(f->side); /* for drives which multiplex SIDE and DIR */
 | |
|     SEQUENCER_CONTROL_Write(1); /* put the sequencer into reset */
 | |
|     {
 | |
|         uint8_t i = CyEnterCriticalSection();        
 | |
|         REPLAY_FIFO_SET_LEVEL_MID;
 | |
|         REPLAY_FIFO_CLEAR;
 | |
|         REPLAY_FIFO_SINGLE_BUFFER_UNSET;
 | |
|         CyExitCriticalSection(i);
 | |
|     }
 | |
| 
 | |
|     init_replay_dma();
 | |
|     bool writing = false; /* to the disk */
 | |
|     int packets = f->bytes_to_write / FRAME_SIZE;
 | |
|     bool finished = (packets == 0);
 | |
|     int count_written = 0;
 | |
|     int count_read = 0;
 | |
|     dma_writing_to_td = 0;
 | |
|     dma_reading_from_td = -1;
 | |
|     dma_underrun = false;
 | |
|     
 | |
|     int old_reading_from_td = -1;
 | |
|     for (;;)
 | |
|     {
 | |
|         //CyWdtClear();
 | |
| 
 | |
|         /* Read data from USB into the buffers. */
 | |
|         
 | |
|         if (NEXT_BUFFER(dma_writing_to_td) != dma_reading_from_td)
 | |
|         {
 | |
|             if (writing && (dma_underrun || index_irq))
 | |
|                 goto abort;
 | |
|             
 | |
|             uint8_t* buffer = dma_buffer[dma_writing_to_td];
 | |
|             if (finished)
 | |
|             {
 | |
|                 /* There's no more data to read, so fake some. */
 | |
|                 
 | |
|                 memset(buffer, 0x3f, BUFFER_SIZE);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 (void) usb_read(FLUXENGINE_DATA_OUT_EP_NUM, buffer);
 | |
|                 count_read++;
 | |
|                 
 | |
|                 if (count_read == packets)
 | |
|                     finished = true;
 | |
|             }
 | |
|             dma_writing_to_td = NEXT_BUFFER(dma_writing_to_td);
 | |
|             
 | |
|             /* Once all the buffers are full, start writing. */
 | |
|             
 | |
|             if ((dma_reading_from_td == -1) && (dma_writing_to_td == BUFFER_COUNT-1))
 | |
|             {
 | |
|                 dma_reading_from_td = old_reading_from_td = 0;
 | |
|                 
 | |
|                 /* Start the DMA engine. */
 | |
|                 
 | |
|                 SEQUENCER_DMA_FINISHED_IRQ_Enable();
 | |
|                 dma_underrun = false;
 | |
|                 CyDmaChSetInitialTd(dma_channel, td[dma_reading_from_td]);
 | |
|                 CyDmaClearPendingDrq(dma_channel);
 | |
|                 CyDmaChEnable(dma_channel, 1);
 | |
| 
 | |
|                 /* Wait for the index marker. While this happens, the DMA engine
 | |
|                  * will prime the FIFO. */
 | |
|                 hardsec_index_threshold = f->hardsec_threshold_ms;
 | |
|                 index_irq = false;
 | |
|                 while (!index_irq)
 | |
|                     ;
 | |
|                 index_irq = false;
 | |
| 
 | |
|                 writing = true;
 | |
|                 ERASE_REG_Write(1); /* start erasing! */
 | |
|                 SEQUENCER_CONTROL_Write(0); /* start writing! */
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (writing && (dma_underrun || index_irq))
 | |
|             goto abort;
 | |
| 
 | |
|         if (dma_reading_from_td != old_reading_from_td)
 | |
|         {
 | |
|             count_written++;
 | |
|             old_reading_from_td = dma_reading_from_td;
 | |
|         }
 | |
|     }
 | |
| abort:
 | |
|     SEQUENCER_DMA_FINISHED_IRQ_Disable();
 | |
| 
 | |
|     SEQUENCER_CONTROL_Write(1); /* reset */
 | |
|     if (writing)
 | |
|     {
 | |
|         ERASE_REG_Write(0);
 | |
|         CyDmaChSetRequest(dma_channel, CY_DMA_CPU_TERM_CHAIN);
 | |
|         while (CyDmaChGetRequest(dma_channel))
 | |
|             ;
 | |
|         CyDmaChDisable(dma_channel);
 | |
|     }
 | |
|     
 | |
|     print("p=%d cr=%d cw=%d f=%d w=%d index=%d underrun=%d", packets, count_read, count_written, finished, writing, index_irq, dma_underrun);
 | |
|     hardsec_index_threshold = 0;
 | |
|     if (!finished)
 | |
|     {
 | |
|         /* There's still some data to read, so just read and blackhole it ---
 | |
|          * easier than trying to terminate the connection. */
 | |
|         while (count_read != packets)
 | |
|         {
 | |
|             (void) usb_read(FLUXENGINE_DATA_OUT_EP_NUM, usb_buffer);
 | |
|             count_read++;
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     deinit_dma();
 | |
|     
 | |
|     STEP_REG_Write(0);
 | |
|     if (dma_underrun)
 | |
|     {
 | |
|         print("underrun!");
 | |
|         send_error(F_ERROR_UNDERRUN);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     print("success");
 | |
|     DECLARE_REPLY_FRAME(struct any_frame, F_FRAME_WRITE_REPLY);
 | |
|     send_reply((struct any_frame*) &r);
 | |
| }
 | |
| 
 | |
| static void cmd_erase(struct erase_frame* f)
 | |
| {
 | |
|     SIDE_REG_Write(f->side);
 | |
|     seek_to(current_track);
 | |
|     /* Disk is now spinning. */
 | |
|     
 | |
|     print("start erasing");
 | |
|     hardsec_index_threshold = f->hardsec_threshold_ms;
 | |
|     index_irq = false;
 | |
|     while (!index_irq)
 | |
|         ;
 | |
|     ERASE_REG_Write(1);
 | |
|     index_irq = false;
 | |
|     while (!index_irq)
 | |
|         ;
 | |
|     ERASE_REG_Write(0);
 | |
|     hardsec_index_threshold = 0;
 | |
|     print("stop erasing");
 | |
| 
 | |
|     DECLARE_REPLY_FRAME(struct any_frame, F_FRAME_ERASE_REPLY);
 | |
|     send_reply((struct any_frame*) &r);
 | |
| }
 | |
| 
 | |
| static void cmd_set_drive(struct set_drive_frame* f)
 | |
| {
 | |
|     if (drive0_present && !drive1_present)
 | |
|         f->drive = 0;
 | |
|     if (drive1_present && !drive0_present)
 | |
|         f->drive = 1;
 | |
|     set_drive_flags(f);
 | |
|     
 | |
|     DECLARE_REPLY_FRAME(struct any_frame, F_FRAME_SET_DRIVE_REPLY);
 | |
|     send_reply((struct any_frame*) &r);
 | |
| }
 | |
| 
 | |
| static uint16_t read_output_voltage_mv(void)
 | |
| {
 | |
|     OUTPUT_VOLTAGE_ADC_StartConvert();
 | |
|     OUTPUT_VOLTAGE_ADC_IsEndConversion(OUTPUT_VOLTAGE_ADC_WAIT_FOR_RESULT);
 | |
|     uint16_t samples = OUTPUT_VOLTAGE_ADC_GetResult16();
 | |
|     return OUTPUT_VOLTAGE_ADC_CountsTo_mVolts(samples);
 | |
| }
 | |
| 
 | |
| static void read_output_voltages(struct voltages* v)
 | |
| {
 | |
|     SIDE_REG_Write(1); /* set DIR to low (remember this is inverted) */
 | |
|     CyDelay(100);
 | |
|     v->logic0_mv = read_output_voltage_mv();
 | |
| 
 | |
|     SIDE_REG_Write(0);
 | |
|     CyDelay(100);
 | |
|     v->logic1_mv = read_output_voltage_mv();
 | |
| }
 | |
| 
 | |
| static uint16_t read_input_voltage_mv(void)
 | |
| {
 | |
|     INPUT_VOLTAGE_ADC_StartConvert();
 | |
|     INPUT_VOLTAGE_ADC_IsEndConversion(INPUT_VOLTAGE_ADC_WAIT_FOR_RESULT);
 | |
|     uint16_t samples = INPUT_VOLTAGE_ADC_GetResult16();
 | |
|     return INPUT_VOLTAGE_ADC_CountsTo_mVolts(samples);
 | |
| }
 | |
| 
 | |
| static void read_input_voltages(struct voltages* v)
 | |
| {
 | |
|     home();
 | |
|     CyDelay(50);
 | |
|     v->logic0_mv = read_input_voltage_mv();
 | |
|     
 | |
|     step(STEP_AWAYFROM0);
 | |
|     CyDelay(50);
 | |
|     v->logic1_mv = read_input_voltage_mv();
 | |
| }
 | |
| 
 | |
| static void cmd_measure_voltages(void)
 | |
| {
 | |
|     stop_motor();
 | |
|     INPUT_VOLTAGE_ADC_Start();
 | |
|     INPUT_VOLTAGE_ADC_SetPower(INPUT_VOLTAGE_ADC__HIGHPOWER);
 | |
|     OUTPUT_VOLTAGE_ADC_Start();
 | |
|     OUTPUT_VOLTAGE_ADC_SetPower(OUTPUT_VOLTAGE_ADC__HIGHPOWER);
 | |
|     
 | |
|     DECLARE_REPLY_FRAME(struct voltages_frame, F_FRAME_MEASURE_VOLTAGES_REPLY);
 | |
|     
 | |
|     CyWdtClear();
 | |
|     MOTOR_REG_Write(0); /* should be ignored anyway */
 | |
|     DRIVESELECT_REG_Write(0); /* deselect both drives */
 | |
|     CyDelay(200); /* wait for things to settle */
 | |
|     read_output_voltages(&r.output_both_off);
 | |
|     read_input_voltages(&r.input_both_off);
 | |
| 
 | |
|     CyWdtClear();
 | |
|     DRIVESELECT_REG_Write(1); /* select drive 0 */
 | |
|     CyDelay(50);
 | |
|     read_output_voltages(&r.output_drive_0_selected);
 | |
|     read_input_voltages(&r.input_drive_0_selected);
 | |
|     MOTOR_REG_Write(1);
 | |
|     CyDelay(300);
 | |
|     CyWdtClear();
 | |
|     read_output_voltages(&r.output_drive_0_running);
 | |
|     read_input_voltages(&r.input_drive_0_running);
 | |
|     MOTOR_REG_Write(0);
 | |
|     CyDelay(300);
 | |
|     
 | |
|     CyWdtClear();
 | |
|     DRIVESELECT_REG_Write(2); /* select drive 1 */
 | |
|     CyDelay(50);
 | |
|     read_output_voltages(&r.output_drive_1_selected);
 | |
|     read_input_voltages(&r.input_drive_1_selected);
 | |
|     MOTOR_REG_Write(1);
 | |
|     CyDelay(300);
 | |
|     CyWdtClear();
 | |
|     read_output_voltages(&r.output_drive_1_running);
 | |
|     read_input_voltages(&r.input_drive_1_running);
 | |
|     MOTOR_REG_Write(0);
 | |
|     CyDelay(300);
 | |
| 
 | |
|     CyWdtClear();
 | |
|     DRIVESELECT_REG_Write(0);
 | |
|     homed = false;
 | |
|     INPUT_VOLTAGE_ADC_Stop();
 | |
|     OUTPUT_VOLTAGE_ADC_Stop();
 | |
|     send_reply((struct any_frame*) &r);
 | |
| }
 | |
| 
 | |
| static void handle_command(void)
 | |
| {
 | |
|     static uint8_t input_buffer[FRAME_SIZE];
 | |
|     (void) usb_read(FLUXENGINE_CMD_OUT_EP_NUM, input_buffer);
 | |
| 
 | |
|     struct any_frame* f = (struct any_frame*) input_buffer;
 | |
|     print("command 0x%02x", f->f.type);
 | |
|     switch (f->f.type)
 | |
|     {
 | |
|         case F_FRAME_GET_VERSION_CMD:
 | |
|             cmd_get_version(f);
 | |
|             break;
 | |
|             
 | |
|         case F_FRAME_SEEK_CMD:
 | |
|             cmd_seek((struct seek_frame*) f);
 | |
|             break;
 | |
|         
 | |
|         case F_FRAME_MEASURE_SPEED_CMD:
 | |
|             cmd_measure_speed((struct measurespeed_frame*) f);
 | |
|             break;
 | |
|             
 | |
|         case F_FRAME_BULK_WRITE_TEST_CMD:
 | |
|             cmd_bulk_write_test(f);
 | |
|             break;
 | |
|             
 | |
|         case F_FRAME_BULK_READ_TEST_CMD:
 | |
|             cmd_bulk_read_test(f);
 | |
|             break;
 | |
|             
 | |
|         case F_FRAME_READ_CMD:
 | |
|             cmd_read((struct read_frame*) f);
 | |
|             break;
 | |
|         
 | |
|         case F_FRAME_WRITE_CMD:
 | |
|             cmd_write((struct write_frame*) f);
 | |
|             break;
 | |
|             
 | |
|         case F_FRAME_ERASE_CMD:
 | |
|             cmd_erase((struct erase_frame*) f);
 | |
|             break;
 | |
|         
 | |
|         case F_FRAME_RECALIBRATE_CMD:
 | |
|             cmd_recalibrate();
 | |
|             break;
 | |
|             
 | |
|         case F_FRAME_SET_DRIVE_CMD:
 | |
|             cmd_set_drive((struct set_drive_frame*) f);
 | |
|             break;
 | |
|         
 | |
|         case F_FRAME_MEASURE_VOLTAGES_CMD:
 | |
|             cmd_measure_voltages();
 | |
|             break;
 | |
|             
 | |
|         default:
 | |
|             send_error(F_ERROR_BAD_COMMAND);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void detect_drives(void)
 | |
| {
 | |
|     current_drive_flags.drive = 0;
 | |
|     start_motor();
 | |
|     drive0_present = home();
 | |
|     stop_motor();
 | |
|     
 | |
|     current_drive_flags.drive = 1;
 | |
|     start_motor();
 | |
|     drive1_present = home();
 | |
|     stop_motor();
 | |
|     
 | |
|     print("drive 0: %s drive 1: %s", drive0_present ? "yes" : "no", drive1_present ? "yes" : "no");
 | |
| }
 | |
| 
 | |
| int main(void)
 | |
| {
 | |
|     CyGlobalIntEnable;
 | |
|     CySysTickStart();
 | |
|     CySysTickSetCallback(4, system_timer_cb);
 | |
|     INDEX_IRQ_StartEx(&index_irq_cb);
 | |
|     SAMPLER_DMA_FINISHED_IRQ_StartEx(&capture_dma_finished_irq_cb);
 | |
|     SEQUENCER_DMA_FINISHED_IRQ_StartEx(&replay_dma_finished_irq_cb);
 | |
|     INPUT_VOLTAGE_ADC_Stop();
 | |
|     OUTPUT_VOLTAGE_ADC_Stop();
 | |
|     DRIVESELECT_REG_Write(0);
 | |
|     UART_Start();
 | |
|     USBFS_Start(0, USBFS_DWR_VDDD_OPERATION);
 | |
|     USBFS_DisableOutEP(FLUXENGINE_DATA_OUT_EP_NUM);
 | |
|     
 | |
|     CyWdtStart(CYWDT_1024_TICKS, CYWDT_LPMODE_DISABLED);
 | |
|     
 | |
|     for (;;)
 | |
|     {
 | |
|         CyWdtClear();
 | |
|         
 | |
|         if (motor_on)
 | |
|         {
 | |
|             uint32_t time_on = clock - motor_on_time;
 | |
|             if (time_on > MOTOR_ON_TIME)
 | |
|                 stop_motor();
 | |
|         }
 | |
|         
 | |
|         if (!USBFS_GetConfiguration() || USBFS_IsConfigurationChanged())
 | |
|         {
 | |
|             print("Waiting for USB...");
 | |
|             while (!USBFS_GetConfiguration())
 | |
|                 CyWdtClear();
 | |
|             print("USB ready");
 | |
|             USBFS_EnableOutEP(FLUXENGINE_CMD_OUT_EP_NUM);
 | |
|             print("Scanning drives...");
 | |
|             detect_drives();
 | |
|         }
 | |
|         
 | |
|         if (USBFS_GetEPState(FLUXENGINE_CMD_OUT_EP_NUM) == USBFS_OUT_BUFFER_FULL)
 | |
|         {
 | |
|             set_drive_flags(¤t_drive_flags);
 | |
|             handle_command();
 | |
|             USBFS_EnableOutEP(FLUXENGINE_CMD_OUT_EP_NUM);
 | |
|             print("idle");
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| const uint8_t USBFS_MSOS_CONFIGURATION_DESCR[USBFS_MSOS_CONF_DESCR_LENGTH] = {
 | |
| /*  Length of the descriptor 4 bytes       */   0x28u, 0x00u, 0x00u, 0x00u,
 | |
| /*  Version of the descriptor 2 bytes      */   0x00u, 0x01u,
 | |
| /*  wIndex - Fixed:INDEX_CONFIG_DESCRIPTOR */   0x04u, 0x00u,
 | |
| /*  bCount - Count of device functions.    */   0x01u,
 | |
| /*  Reserved : 7 bytes                     */   0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
 | |
| /*  bFirstInterfaceNumber                  */   0x00u,
 | |
| /*  Reserved                               */   0x01u,
 | |
| /*  compatibleId - "WINUSB\0\0"            */   'W', 'I', 'N', 'U', 'S', 'B', 0, 0,
 | |
| /*  subcompatibleID - "00001\0\0"          */   '0', '0', '0', '0', '1',
 | |
|                                                 0x00u, 0x00u, 0x00u,
 | |
| /*  Reserved : 6 bytes                     */   0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u
 | |
| };
 | |
| 
 | |
| const uint8_t USBFS_MSOS_EXTENDED_PROPERTIES_DESCR[224] = {
 | |
|     /* Length; 4 bytes       */   224, 0, 0, 0,
 | |
|     /* Version; 2 bytes      */   0x00, 0x01, /* 1.0 */
 | |
|     /* wIndex                */   0x05, 0x00,
 | |
|     /* Number of sections    */   0x01, 0x00,
 | |
|     /* Property section size */   214, 0, 0, 0,
 | |
|     /* Property data type    */   0x07, 0x00, 0x00, 0x00, /* 7 = REG_MULTI_SZ Unicode */
 | |
|     /* Property name length  */   42, 0,
 | |
|     /* Property name         */   'D', 0, 'e', 0, 'v', 0, 'i', 0, 'c', 0, 'e', 0,
 | |
|                                   'I', 0, 'n', 0, 't', 0, 'e', 0, 'r', 0, 'f', 0,
 | |
|                                   'a', 0, 'c', 0, 'e', 0, 'G', 0, 'U', 0, 'I', 0,
 | |
|                                   'D', 0, 's', 0, 0,   0,
 | |
|     /* Property data length  */   158, 0, 0, 0,
 | |
|     /* GUID #1 data          */   '{', 0, '3', 0, 'd', 0, '2', 0, '7', 0, '5', 0,
 | |
|                                   'c', 0, 'f', 0, 'e', 0, '-', 0, '5', 0, '4', 0,
 | |
|                                   '3', 0, '5', 0, '-', 0, '4', 0, 'd', 0, 'd', 0,
 | |
|                                   '5', 0, '-', 0, 'a', 0, 'c', 0, 'c', 0, 'a', 0,
 | |
|                                   '-', 0, '9', 0, 'f', 0, 'b', 0, '9', 0, '9', 0,
 | |
|                                   '5', 0, 'e', 0, '2', 0, 'f', 0, '6', 0, '3', 0,
 | |
|                                   '8', 0, '}', 0, '\0', 0,
 | |
|     /* GUID #2 data          */   '{', 0, '3', 0, 'd', 0, '2', 0, '7', 0, '5', 0,
 | |
|                                   'c', 0, 'f', 0, 'e', 0, '-', 0, '5', 0, '4', 0,
 | |
|                                   '3', 0, '5', 0, '-', 0, '4', 0, 'd', 0, 'd', 0,
 | |
|                                   '5', 0, '-', 0, 'a', 0, 'c', 0, 'c', 0, 'a', 0,
 | |
|                                   '-', 0, '9', 0, 'f', 0, 'b', 0, '9', 0, '9', 0,
 | |
|                                   '5', 0, 'e', 0, '2', 0, 'f', 0, '6', 0, '3', 0,
 | |
|                                   '8', 0, '}', 0, '\0', 0, '\0', 0
 | |
| };
 | |
| 
 | |
| uint8 USBFS_HandleVendorRqst(void)
 | |
| {
 | |
|     if (!(USBFS_bmRequestTypeReg & USBFS_RQST_DIR_D2H))
 | |
|         return false;
 | |
| 
 | |
|     switch (USBFS_bRequestReg)
 | |
|     {
 | |
|         case USBFS_GET_EXTENDED_CONFIG_DESCRIPTOR:
 | |
|             switch (USBFS_wIndexLoReg)
 | |
|             {
 | |
|                 case 4:
 | |
|                     USBFS_currentTD.pData = (volatile uint8 *) &USBFS_MSOS_CONFIGURATION_DESCR[0u];
 | |
|                     USBFS_currentTD.count = USBFS_MSOS_CONFIGURATION_DESCR[0u];
 | |
|                     return USBFS_InitControlRead();
 | |
|                     
 | |
|                 case 5:
 | |
|                     USBFS_currentTD.pData = (volatile uint8 *) &USBFS_MSOS_EXTENDED_PROPERTIES_DESCR[0u];
 | |
|                     USBFS_currentTD.count = USBFS_MSOS_EXTENDED_PROPERTIES_DESCR[0u];
 | |
|                     return USBFS_InitControlRead();
 | |
|             }
 | |
| 
 | |
|         default:
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 |